Best Practices: a series of theory, evidence, and implementation

Douglas Curran-Everett
Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado; and Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, Colorado

Submitted 10 July 2015; accepted in final form 14 July 2015

In my introductory editorial (1), I mentioned the Associate Editors, Editorial Board members, and I were planning an Editorial series that would link educational concepts to their implementation within the classroom. We have mapped out the initial themes of that series, a series we call Best Practices. We hope Best Practices will provide opportunities for faculty development in two ways: by reviewing the theory and evidence behind current approaches to teaching and learning and by providing a practical framework to implement those theories in the classroom or laboratory.

In our inaugural Best Practices paper (2), Marsha Lakes Matyas and Dee Silverthorn summarize the history and evolution of the community of practice that is passionate about education in science and physiology. Among the resources available to members of this community of practice are the Life Science Teaching Resource Community, which evolved from the Archive of Teaching Resources, and the Sourcebook of Laboratory Activities in Physiology, which grew out of a collection of practical experiments published by the International Union of Physiological Sciences.

In future installments, Best Practices will delve into

• active and student-centered learning,
• assessment,
• educational research and scholarship,
• engaging lectures,
• flipped classrooms,
• instructional design,
• learning theories, and
• mentoring.

We hope Best Practices will motivate you to consider—and help you implement—some of the best practices in science and physiology education.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES