In the last several decades, there has been a shift in the mindset of research structure from classical "systems or integrative biology" to more molecular focused "-omics" study. Systems biology is characterized as an approach to cells, tissues, or organs that "put the pieces together" and examines the effects as opposed to taking them apart and examining the individual components (11). Omics, on the other hand, refer to fields of studies that end in the suffix "-omic," such as proteomics or genomics, and focus on data representing a set of some kind, whether that be molecules, proteins, lipids, etc. These -omic studies operate on the understanding that if we are to advance the field of medicine to the point of personalized and individual healthcare, we must have a better understanding of what makes an individual unique at the molecular level (8). Whereas the counterpoint emphasizes that, despite great advances in our understanding of genomics and proteomics, the immense complexity of diseases and redundancies in human physiological function are inhibiting our ability to apply this knowledge directly into viable treatment options for today's problems (6, 10).

A recent topic of debate in physiological societies has been whether or not the -omic revolution has delivered in its promises in both clinical medicine and advancing the field of physiology. More importantly, the question arises as to whether a return to "systems biology" and/or "integrative biology" is necessary to form translational connections between laboratories and clinics and be able to use the new information to directly impact healthcare. (5, 6). In addition, physiology is defined as "the study of living organisms and their parts," and this definition intimately links physiology to an integrative framework much like systems biology. Whether this integration between the two research areas forms connections between laboratories and clinics occurs or not, this returns the discipline to its original definition.

Numerous established scientists have authored editorials on these ideas and stressed the importance of integrative physiology in both scientific practices and educational systems. They acknowledge that there are current limitations to the application of the discoveries but believe that with the development of new technologies we will be able to integrate these new data to elucidate the complex interactions of biological systems (1–5, 9, 10).

The purpose of the present study was to assess the perspectives on the discipline of physiology from undergraduate physiology majors by determining their preference for areas of study between -omic-type lessons and systems-based course work. Seventy-nine millennial undergraduate students (45 male students and 34 female students) were asked to provide a free response answer on where their interests specifically lie along the continuum of molecular to integrative. Millennials, also known as the millennial generation and generation Y, are a generational cohort born between 1981 and 2000 that currently comprises the majority of undergraduate populations in universities (7). This set of students is representative of a varied curriculum taking classes that stress -omic-type education (cellular/molecular biology) as well as integrative systems biology. The class in which this survey was administered is titled "Capstone Laboratory in Physiology" and is a senior-level course often taken by students in their last semester of undergraduate studies. Approximately 80% of these students state a career plan in healthcare with the majority being premedicine. The free response asked students to respond to the following prompt:

Physiology ranges from molecules to [humans]. That is to say we can think of Physiology ranging from understanding molecules/cells all the way up to whole body/integrative function. Many people have a preference along that continuum (i.e., some like receptor phosphorylation cascades while others like how the body functions at altitude) and/or have favorite molecular/system/integrative function. Where are your interests along that continuum and what molecule/system/integrative function do you enjoy studying?

Student responses were initially broken down into the following three categories: preference for integrative or systems physiology, molecular or -omics physiology, or indifferent between the two/enjoy both equally. Not all responses stated

<table>
<thead>
<tr>
<th>Table 1. Student responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular/molecular</td>
</tr>
</tbody>
</table>
| **Mixed interest** | "I think I have a soft spot for neural electrophysiology and cardiovascular integration. I will never cease to find electricity amazing and the heart and brain so complex, yet simple when broken down systematically and explained at the cellular level, depending almost entirely on sodium and potassium channels to generate potential gradients."
| **Integrative** | "My interests along the Physiology continuum are at the point of the whole body. I am interested in how the different parts of the body work and how they all work together to keep the body in homeostasis. My interests are in how the body’s different systems interact to maintain a constant level of health. I enjoy it all the way from the cells up to the entire systems having a dependence on other aspects of the other systems to perform different tasks." |

Address for reprint requests and other correspondence: E. A. Wehrwein, 567 Wilson Road, 2195 BPS, East Lansing, MI 48825 (e-mail: Wehrwein7@msu.edu).
specifically in the precise language as above, and so all responses were sorted by a single investigator into the most appropriate category. An example response for each category is provided (Table 1) as well as student indications of their preferred areas of interest for study. The vast majority of the student responses indicated that their interests majorly lay along systems/integrative physiology (67.1%) and that they would prefer to study this form of biology rather than indepth cellular and molecular physiology (22.4%), with 10.5% of students preferring to study both equally (Fig. 1). Second, the prompt broke down student responses into various organ systems and were binned based on functional similarity by the authors to establish key areas of interest. In some situations, students outlined one or more preferred organ systems to study in their response, yielding an unequal number of responses and students in the survey results. Of the 79 students asked this question, we received 89 responses, as some students provided more than one preferred system of study. The cardiovascular system was the most popular answer (28.1%) followed by the nervous system/brain (20.2%), musculoskeletal system (14.6%), respiratory system (7.9%), renal system (6.7%), digestive system (6.7%), blood/stem cells/immune system (4.5%), endocrinology (4.5%), reproductive system (3.4%), metabolism/nutrition (2.2%), and ophthalmology (1.1%; Fig. 2). In addition, there were several students (19.2%) who specifically mentioned exercise or environmental physiology as a topic of interest, and 10.3% indicated pathophysiology.

This survey clearly shows that the current perspective of millennial undergraduate students is firmly rooted in systems and integrative physiology. Perhaps a shift away from curricula focused on teaching -omic physiology and a return to and heavier focus on systems and integrative physiology would be most appropriate and rewarding for physiology students of the millennial generation. In addition, with the growth of physiology as a stand-alone undergraduate major, this shift in teaching focus could increase enrollment in such programs, especially those interested in a preprofessional health track.