An exploration of the factors that contribute to learning satisfaction of first-year anatomy and physiology students

Saramarie Eagleton
Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
Submitted 25 March 2014; accepted in final form 13 April 2015

Eagleton S. An exploration of the factors that contribute to learning satisfaction of first-year anatomy and physiology students. Adv Physiol Educ 39: 158–166, 2015; doi:10.1152/advan.00040.2014.—Lecturers have reverted to using a “blended” approach when teaching anatomy and physiology. Student responses as to how this contributes to their learning satisfaction were investigated using a self-administered questionnaire. The questionnaire consisted of closed- and open-ended questions that were based on three determinants of learning satisfaction: perceived course learnability, learning community support, and perceived learning effectiveness. Regarding course learnability, students responded positively on questions regarding the relevance of the subject for their future careers. However, students identified a number of distractions that prevented them from paying full attention to their studies. As far as learning community support was concerned, respondents indicated that they were more comfortable asking a peer for support if they were unsure of concepts than approaching the lecturing staff. Most of the students study in their second language, and this was identified as a stumbling block for success. There was a difference in opinion among students regarding the use of technology for teaching and learning of anatomy and physiology. From students’ perceptions regarding learning effectiveness, it became clear that students’ expectations of anatomy and physiology were unrealistic; they did not expect the module to be so comprehensive. Many of the students were also “grade oriented” rather than “learning oriented” as they indicated that they were more concerned about results than “owning” the content of the module. Asking students to evaluate aspects of the teaching and learning process have provided valuable information to improve future offerings of anatomy and physiology.

The pass rate at institutions for higher education is a matter of concern. A poor pass and graduation rate does not only have economic implications for the institution but also has implications for learners and the country. Graduates earn more than high school leavers and will be paying more taxes, and they are usually less dependent on the state’s healthcare and pension system (19).

Traditionally, education has not been driven so much by technology as by other factors such as ideology, cultural and religious heritage, and other sociopolitical factors. However, over the past decade, enormous challenges have arisen because of changing student demographics, demands on providers of education, and the rapid development in technology (1, 4).

To keep in pace with these changes, the lecturing staff of the physiology department design and use blended learning interventions to help students master the content. These interventions include lectures, tutorials (both paper based and computer assisted), practical sessions in the laboratory also using computer-assisted equipment, and computer-based animations and simulations. Structured discussions are used during these interventions to encourage students to use the “language of physiology” and to engage with the content.

A blended learning environment combines the advantages of face-to-face and technology-assisted learning to promote learning satisfaction. An added advantage of a blended learning environment is that different modes of instruction support the different types of knowledge acquisition, which support different learning styles (13).

Learning satisfaction nurtures motivation to study, and if the lecturing staff incorporate these interventions using the blended teaching and learning approach, it could have a positive effect on pass rates and retention of students. According to Hu et al. (12), the determinants of learning satisfaction are learning effectiveness, perceived course learnability, and learning community support (Fig. 1).

The aim of this article is to indicate which aspects of a blended learning approach contribute to learning satisfaction. This information was obtained by asking students to respond to questions related to each of the determinants of learning satisfaction.

Background on Determinants of Learning Satisfaction

Perceived course learnability. A perception of course learnability is required to motivate students to persist with their learning. The complex theme of motivation has been described extensively by Keller (14). According to Keller, the five principles of motivation are as follows:

- Curiosity: which is aroused due to a perceived gap in current knowledge and helps to gain and maintain attention (14);
- Relevance: when learners perceive information to be relevant to their own goal for learning, they will be motivated to ensure that they understand the concept. Teaching students abstract theory alone can be demotivating as they find it difficult to relate the theory to their discipline. This is especially true for “building block” subjects such as physiology, which students do during their first years of study (14, 15);
- Success: motivation is promoted when learners are confident that they can succeed in mastering a learning task (14);
- Extrinsic and intrinsic motivators: learning satisfaction helps to maintain continuous motivation. This requires a balance between extrinsic and intrinsic motivators (14);
- Self-regulation strategies protect the intentions to learn when distracted and obstacles interfere with persistence. Distractors could be emotional (lack of confidence, low motivation, lack of interest, or nervousness or anxiousness), physical (problems
Cognitive function is the result of social interaction, as learning takes place within a social environment. This interaction in a blended learning environment consists of activities in the classroom and laboratories and could happen during lectures, tutorials, structured discussions, and practical sessions. Learning also takes place through collaboration with other students and using social media to communicate. The direction of the cognitive development due to mutual complementary role of the learner and “facilitator” is inseparable of their social environment and is seen as an interpsychological process (27).

The second concept, cultural tools, refers to the artificial means that enable individuals to master learning. Learners need to master physiological tools to develop specific skills to become competent practitioners. In a blended learning environment, these tools include attending lectures, where concepts are explained; participating in discussions with peers, to ensure understanding and clarify misconceptions; to use the prescribed textbook and other resources to reinforce understanding; to use computer-assisted materials, such as animations and simulations, to visualize physiological processes; and to participate in practical sessions using models, wet specimens, and laboratory equipment to help conceptualize physiological processes. The character and quality of these cultural tools are direct determinants of the particular features and quality of the mental activity of the learner. Once these devices have been acquired, they can be used to create new functional psychological systems that operate according to new rules and develop according to new laws. Vygotsky distinguished between the effect of everyday and scientific “tools” that lead to two different types of developmental outcomes. Everyday concepts are acquired in an unstructured and fragmented manner from interactions with people and are subject to chance and often difficult to trace. Scientific concepts are learned in specially organized and structured interactions aiming to introduce learners to scientifically sound definitions of diverse phenomena. The qualities of cultural tools induce and shape the direction of the development. If learners are faced with fragmented phenomena and poorly generalized ways of dealing with them, they end up learning by memorizing unrelated facts (26). Efficient cultural tools are learning materials that take efficient cultural practices into account that express the essence of the phenomena studied and provide templates of action and contexts where the actions can be applied. Providing appropriate cultural tools is characterized by high levels of mastery and transfer of knowledge by learners and retorts the important question of “how the teaching and learning of specific cultural tools impact on the development of the learner” (25).

The most common understanding of the third concept, the zone of proximal development, is that in collaboration with a more experienced person the learner is able to solve problems on a more advanced level than when acting alone. The quantity as well as quality of the scaffolding play a role in this collaborative process. The experienced person structures and mediates the collaborative process. The experienced person structures and mediates the collaborative process. The experienced person structures and mediates the collaborative process. The experienced person structures and mediates the collaborative process.

Anna Stetsenko’s expanded on the heuristic ideas in Vygotsky’s theory, which linked learning to development. She linked the three concepts of the Vygotskian framework, which are the role of “social interaction” as the main source of mental processes, “cultural tools” as mediating components of psychological functioning, and the “zone of proximal development” as the main portal through which development proceeds, saying that these three are interconnected by activity (26).

Fig. 1. Determinants of learning satisfaction.

with eyesight, hearing, or health or mobility), psychological (fear of failure, low self-esteem, deflated ego, or feeling of alienation), or sociological (unable to work in groups, difficulty in bonding with others, or problems with “connecting” with lecturer or an unfamiliar environment) (7).

Student perceptions of the learnability of a course are affected by their learning style. Differences in students learning style underscore the importance of the physiology lecturer to be aware of the needs of students, which, in turn, calls for a suitable delivery medium for the learning content (11, 12).

Learning style refers to the characteristic behavior of an individual student and serves as a relatively stable indicator of how information is perceived (visual, auditory, or kinesthetic) (9) as well as which cognitive style the student prefers when interacting with information within the learning environment (8, 17).

The different learning domains, cognitive, affective, psychomotor, and conative, give a guideline as to what students need to be able to learn. The cognitive domain relates to the ability to think and to mental skills, whereas the affective domain is about emotions and feelings, especially related to values. The psychomotor domain is concerned with the mastery of physical skills (behavior), whereas the conative domain focuses on striving to perform at the highest level, i.e., having the will, desire, drive, level of effort, mental energy, intention, striving, and self-determination to learn. The higher education graduate of the 21st century needs the opportunity to develop expertise across all four domains (22).

Learning community support. Vygotsky (28) claimed that only properly organized learning results in mental development and sets a variety of developmental processes into motion. This raises the following question: how are teaching, learning, and development related?

The “sociocultural framework” that was inspired by Lev Vygotsky (28) claims that the development of the mind is a result of constant interactions with the social world. This included interactions between the environment in which students grow up and the academic environment in which they have to study (28).

Anna Stetsenko’s expanded on the heuristic ideas in Vygotsky’s theory, which linked learning to development. She linked the three concepts of the Vygotskian framework, which are the role of “social interaction” as the main source of mental processes, “cultural tools” as mediating components of psychological functioning, and the “zone of proximal development” as the main portal through which development proceeds, saying that these three are interconnected by activity (26).
modeling, contingency managing, feedback, instructing, questioning, and cognitive structuring, plays a role in the cognitive development of the learner (25, 26).

Thus, the full heuristic potential of the three concepts, as described by Vygotsky, can be uncovered by exploring the internal links among the concepts in a way that exposes the grounding dynamics of human development without compartmentalizing them into separate processes. The link between these three concepts involves the “transformation of activity,” where the learner makes progress under the guidance of the more experienced person, who, as a representative of the culture of the local community (the community of physiologists), provides the learner with new cultural tools (physiological concepts and processes) (23). Cultural tools are first introduced on an external, interpersonal level through shared interactions (activities) between the learner and expert for the learner to acquire them. The expert reveals the meaning and function of the new cultural tools as well as how to operate with the aid of the tools. The learner gradually internalizes the meaning and function of the cultural tools, and this constitutes the learner’s advanced cognitive functioning. “By virtue of mastering new cognitive tools in which essential characteristics of cultural practices are embodied in a schematized and abbreviated form,” the learner is able to progress to a new stage of development to independently preform more complex tasks (26).

Perceived learning effectiveness. According to Heath et al. (10), learning effectiveness in medical education is improved when the principles of the Cognitive Flexibility Theory, as described by Feltovich et al. in 1989, are applied. These principles warn that oversimplification of complex concepts should be avoided, that students should be exposed to multiple examples of a concept, that students should be provided with multiple representations of the content (blended approach), that knowledge is context dependent, and that knowledge construction and not transmission should be emphasized. This approach also enhances knowledge transfer.

Within a constructivist learning environment, the learning effectiveness of the conceptual phase is often best supported by face-to-face instruction to assist with the construction of appropriate schemata (16). The enriched intellectual stimulation supported by interactive computer-assisted presentations of scenarios found in animations and simulations supports more advanced learning activities. The flexibility of branching and immediate feedback is a further advantage of technology-assisted learning to support each student according to their personal needs (20).

Learning effectiveness can be measured objectively by means of assessment of learning outcomes. Graduates of the 21st century are expected to have skills that focus on higher order outcomes and need to be aligned with the meta-outcomes that cut across the four learning domains. This can be done by assessing student’s ability to access and use information, to communicate using multiple media, to demonstrate understanding accompanied by reflection, to apply rules and procedures to structured and unstructured problems, to be creative, to think critically, to make sound judgements, to solve problems, to exhibit intellectual curiosity, to proactively seek extended knowledge of the discipline, and to exhibit ethical behavior.

Student engagement can be improved by increasing staff engagement with students, engaging students in active, collaborative learning activities, setting high academic standards, and providing continuous timely feedback on activities. The quality of student learning is directly but not exclusively related to the quality of teaching; thus, learning effectiveness can be improved by improving teaching through setting clear goals and objectives and indicating how they will be assessed explicitly. Students should also be shown how to assess their own learning (13, 22).

Learning satisfaction. The determinants of learning satisfaction are considered as the interactions among perceived course learnability, perceived community support, and perceived learning effectiveness (12).

Factors that contribute to learning are the quality of the teaching and interpersonal interactions. Good teaching requires a balanced work load at the right level and that clear goals are set out as to what is expected of the learner for assignments and assessments (30). Active learning with regular feedback from the expert (teacher/tutor) and peers serves as reinforcement to ensure that transfer of learning takes place (29). These factors help to establish a productive learning environment (18, 30).

Factors that play a role in satisfaction are the student’s interest in the subject and their eagerness to understand it. Their attitude toward learning activities is affected by their personal characteristics, and this is especially true for group activities (18).

The role of the diverse learning opportunities in a blended learning environment can add to learning satisfaction. These opportunities are often more creative than traditional learning and improve motivation and achievements (18). Learning satisfaction is increased when the learners experience that the learning meets their own needs and self-imposed goals to accomplish their own desires and values (5).

Improved learning satisfaction leads to decreased attrition, increased enrollment and motivation, and a productive learning environment (30).

METHODS

The methodology for the present study included both quantitative and qualitative procedures. This mixed-methods study consisted of a survey with both closed- and open-ended questions (28). Ethical approval and protocol authorization were obtained from the Faculty of Health Sciences Higher Degrees Committee and Senate of the University of Johannesburg.

Seventy-six of a possible two hundred thirty first-year students (mean age: 19.5 ± 1.4 yr) who were registered for Anatomy and Physiology 1 for Biomedical Technology, Chiropractic, Homoeopathy or Podiatry and Physiology 1 for Emergency Medical Care in the Faculty of Health Sciences of the University of Johannesburg (Johannesburg, South Africa) in 2012 volunteered to participate in the study. Students were assured that their responses would be treated with confidentiality and that their identity would not be revealed. Students

1 Supplemental Material (appendix providing demographic information and the learning survey) for this article is available at the Advances in Physiology Education website.
2 Anatomy and Physiology 1 is an introductory module for all Health Sciences students at the University of Johannesburg. All body systems are described by Frederic H. Martini, Judi L. Nath, and Edwin F. Bartholomew.
Fig. 2. Responses to questions regarding course learnability. HCPE, combined students in Homoeopathy (H), Chiropractic (C), Podiatry (P), and Emergency Medical Care (E) programs.

gave their written consent to participate in the study, after which they completed the questionnaire.

Students completed the self-administered questionnaire, which consisted of the following two sections.

The first section was to acquire demographic information of the students: which module they were registered for, the cultural group they belonged to, their age (in years), and their sex. (Although students had to disclose their cultural group, age, and sex, this information will not be reported in this article.)

The second section was the learning satisfaction survey with both closed-ended (yes/no) and open-ended questions and consisted of three parts: the first part to determine their learning expectations, the second part to determine their perceptions of learning support, and the third part to determine their perceptions of the learnability of the physiology module that they were registered for (12).

RESULTS AND DISCUSSION

Demographics of the Participants

Students who volunteered to participate were registered in the following programs: Homoeopathy (H; 4 students), Chiropractic (C; 9 students), Podiatry (P; 8 students), and Emergency Medical Care (E; 11 students). For data analysis, these students (HCPE) were grouped together as they attended the same class. There were 44 Biomedical Technology students who participated; they covered the same content as the other group but had a separate offering.

Quantifying Learning Satisfaction

The questionnaire was based on the determinants for learning satisfaction, and the role that each of these plays in learning is discussed with the results of this study.

Responses to questions to determine specific aspects of the learnability of the module perceived by the students are shown in Fig. 2 and the following discussion.

Student responses to the questions related to course learnability were as follows:

1. Do you find it interesting to learn more about the functioning of the human body?
 Most students (99%) indicated that they found it interesting.

2. Do you think anatomy and physiology are relevant to prepare you for your career?
 All HCPE students and 88% of Biomedical Technology students could see the relevance of the module for their future careers.

3. Do you think you have what it takes to be a good (program they were registered for was indicated here) ?

4. Are you prepared to give your best to get there?
 Most of the students (99%) were confident that they were capable of being a good professional in their chosen career and that they were prepared to work for it.

5. Do you enjoy studying?
 Eighty-six percent of the students were enjoying their studies.

Responses to questions to determine specific aspects regarding learning community support of the students are shown in Fig. 3 and the following discussion.

Student responses to the questions related to learning community support were as follows:

1. Do you prefer lectures or discussions to learn new content? (The percentage of students preferring lectures is shown in Fig. 3.)

 There was a difference in the preference of the two groups of students, with Biomedical Technology students preferring discussions, whereas HCPE students were more comfortable with lectures.

2. Do you find that you understand the content better if you discuss it with a friend?

 The preference in the previous question was confirmed when 84% of Biomedical Technology students indicated that they understand better if they discuss the work with a peer compared with 67% of HCPE students.

3. Did you find the practicals where you had to use the PowerLabs interesting?

 The majority (86%) of students found the practicals interesting, whereas 73% found it helpful to understand theoretical concepts.

4. Did you find the practicals where you had to use the PowerLabs helpful to understand the concepts that were discussed in class?

 The majority (86%) of students found the practicals interesting, whereas 73% found it helpful to understand theoretical concepts.

5. Would you like more and different types of technology to be used for teaching and learning?

Whereas 75% of Biomedical Technology students would like more technology incorporated in the module, only 37% of HCPE students thought it was necessary.

Responses to questions to determine specific aspects of learning effectiveness of the students are shown in Fig. 4 and the following discussion.

Student responses to the questions related to learning effectiveness were as follows:

1. Do you feel that what is expected for anatomy and physiology is more than what you thought it would be when you came to study?

Fifty-six percent of students entered the programs not expecting the level of anatomy and physiology that is expected of them.

2. Do you find it easy to relate topics that you covered in previous chapters (or other subjects) to understand new work?

Eighty-six percent of students indicated that they were able to relate new content to previous chapters of anatomy and physiology as well as supporting subjects.

3. Did you make use of the CD that accompanies your textbook or any other computer-based material to study?

Only 46% of students made use of the CD with interactive tutorials that accompanies the prescribed textbook.

4. Do you make sure that you understand the work covered during a lecture before moving on to study the next section by asking the lecturer if you do not understand?

Only 42% of students consult the lecturer if they have trouble understanding concepts.

5. Do you make sure that you understand the work covered during a lecture before moving on to study the next section by asking one of your friends if they are not sure?

A large percentage of students (83%) ask their peers if they are not sure of concepts.

6. Do you make sure that you understand the work covered during a lecture before moving on to study the next section by consulting your textbook if you are not sure?

Most students (97%) consult the textbook to clarify uncertainties.

7. Do you make sure that you understand the work covered during a lecture before moving on to study the next section by visiting the library to read up more?

Only 32% of students make use of the library.

8. Do you make sure that you understand the work covered during a lecture before moving on to study the next section by doing an internet search to find out more?

Forty-nine percent of students do internet searches to help them to clarify content.

9. Do you feel your marks are a true reflection of the effort you put into studying?

Only 57% of students thought their effort was reflected in the marks they obtained.

Qualifying Learning Satisfaction

Student written responses to the questionnaire for each of the determinants of learning satisfaction were analyzed using principles of content analysis. In vivo coding was used to identify concepts in the core categories to establish trends (24, 29). The analysis was done using Atlas.ti.

The results are presented according to the themes identified for each of the determinants for learning satisfaction. Figure 5 shows the themes according to which the open-ended questions are discussed.

Perceived Course Learnability

Interesting. A perception of course learnability is required to motivate students to persist with their learning (14). Ninety-nine percent of students were curious to find out more about the functioning of the human body and indicated that they found it interesting to learn about the functioning of the body. As stated by one student, “I, myself, am a fully functional ‘human body’ so it AMAZES me to learn about what is happening in me every minute, second and hour of the day. I love A&P.” This kind of enthusiasm, which is aroused when students are interested in what they are learning, is a strong motivator toward learning effectiveness and learning satisfaction.

Relevant. Ninety-nine percent of students realized that anatomy and physiology is relevant for their future careers. As stated by two students, “I am a medical student who is one day going to qualify to be a great chiropractic doctor, therefore what I learn in A&P will be the basis of my diagnoses, treatment and symptoms when working with patients” and “Even though podiatrist work mostly with feet they are still part of (a very important part of) the human body. Everything...
is so interconnected and synchronized. The A&P of the full body is very relevant.” All students indicated that they were prepared to give their best to reach their goal. If students are aware of the relevance of the subject for their future career, they are more likely to experience learning satisfaction (15).

Distractions. Although students indicated that they were very committed to their studies, they identified several distractions preventing them from paying full attention to their studies. The problems were study related (procrastination, disorganized, demotivated, short concentration span, and laziness), personal (stress, fatigue, worries, headaches, and uncertainty), social (cell phone, social networks, friends, sport, computer games, music, and television), living conditions (family, chores, noise, quietness, and roommates). As stated by one student, “Well with me I stay with my parents. I have to clean, cook, do dishes, study and have a social life, which really gets me busy and stressed. But now I can manage it all.” Other problems that were mentioned were financial problems, transport problems, part-time jobs, and being hungry. As stated by one student, “I have financial problems, sometimes it’s difficult for me to concentrate with an empty stomach.” These distractions are similar to those identified by Dawson (7), who classified distractions related to emotional, physical, psychological, or sociological problems.

Learning Community Support

The key to supporting students to achieve success in physiology lies in identifying the relationship between the factors that contribute to teaching, learning, and the level of mental development of the students. Vygotsky (28) linked these concepts when he described the role of social interactions, the use of cultural tools, and the zone of proximal development.

Social Interactions

The development of the mind is a result of constant interactions within the social world, which includes interactions that students experience in the environment in which they grow up as well as the academic environment in which they study (2, 27). In the academic environment, it is not only interactions with the lecturing staff but also interactions with their peers that stimulate mental development. Although 82% of students indicated that they ask their peers for help when they do not understand the work, as supported by this remark “I prefer to discuss the unknown work with a friend to help grasp concepts,” only 43% stated that they feel at liberty to ask the lecturer if they need to clarify their understanding of a concept, signposted by remarks such as “I seldom ask my lecturer during lecture periods because I feel extremely nervous I am not used to asking questions during class.” Considering the students’ backgrounds (many of them come from rural areas to study in the city) and that >50% of the students are not first-language English speakers, lecturing staff should go out of their way to encourage students during class to consult with them and be approachable during informal discussions, which should put students at ease to ask when they need help.

Cultural Tools

Lectures. In a blended learning environment, students need to be exposed to a variety of tools to master the physiology content. The different modes of instruction support different types of knowledge acquisition (13). Students are first exposed to new content during face-to-face lectures where PowerPoint presentations are used. Interactivity during the lectures helps to improve the understanding and retention of information. Most students (78%) indicated that they find that peer discussions of difficult concepts during class helped them. As stated by two students, “I like discussion because me too I’m involved I have my own opinion especially when we debate I get a better understanding” and “A friend explain[s] it in more simplified way and it is easier to remember and understand what a friend said.”

Technology-assisted learning. Students had the option to use the animated tutorials on the CD that accompanies their textbook on their own. Only 46% of students used these animations to study. Those who did found it helped them: “I used it for the nervous system before writing the test and it makes things better and they explain most of the things very well” and “It helps giving me a visual demonstration of the processes that occur in the work we study and I remember things better like that.” Students who did not use the material reported that they either did not have access to a computer or that their computer was not suitable to run the programs: “Do not have facilities to accommodate that but would love to as I have seen its preview and it’s understandable.”

Practicals. The purpose of doing practicals is to help students see applications of the concepts they learnt about in class. They used the PowerLab systems during the practical sessions. The practicals are designed in such a way that students need to share their results and answers to questions between groups. According to Magoldo, as cited in Beatty and Feldman (3), the students’ preferred style of interaction changes as they develop. During the early stages, college students tend to be dualists. They expect clear indications of what is expected. This is the stage of the absolute knower. This is followed by the stage of the transitional knower, when students use absolutist strategies and realize their capacity for interpretation. They can be encouraged to experiment, but ultimately they want assurance that they are close to being correct. The next stage is that of the independent knower, when students realize that knowledge is open to many interpretations. They are aware of the need for a personal approach to interpreting information, theories, and experiences. They finally reach the stage of the contextual knower when they become comfortable judging how their knowledge base and skills might apply to a situation. They can connect concepts to applied settings. These findings were supported during the practicals. Most of the students (86%) did not mind sharing information with the other groups, and 57% of students indicated that they put in more effort as their peers depended on their results and explanations. Students need to be made aware of the importance of being able to interpret their findings in the light of existing theories and models to be able to apply it in “real world” situations. They also need to learn to critically evaluate results and to trust their peers learn to work as part of a team.

Zone of proximal development. The amount of scaffolding provided by a more experienced person that learners need to solve problems on a more advanced level than when acting alone is what is referred to by the zone of proximal development (25, 26). Students indicated that support from both the lecturer and peers helped them to gain a more advanced understanding of physiology. While they found that the lec-
tutes provided the schemata to structure the content, their peers played an important role in elaborating on the understanding the work, as illustrated by the following examples: “Many times I’m sure I understand something 100%, but when discussing it, there are always new things I pick up that I didn’t previously known,” “I get to interact with the topic and obtain a different view of it from my friend and this enables me to visualize it more clearly.” “Studying alone I tend to leave other things behind but as I begin discussing with my friend it helps me recognize the mistakes I made and help me to understand more,” and “A friend will ask you questions and you will be able to help each other think out of the box.”

Perceived Learning Effectiveness

Expectations. Learning can be considered as being effective when it meets the students’ expectations of what they need to know for the career of their choice. Students entering tertiary education need to be made aware of how anatomy and physiology will enable them to understand their clinical subjects during their senior years as well as help them with diagnosing pathologies in their practice once they qualify. Fifty-six percent of students responded that the workload for anatomy and physiology was more than what they expected it to be when they registered for the module: “I definitely didn’t think that we would study these subjects so deep as we are doing, it would be nice if someone can tell us why so much work have to be done” and “After Term Test 2 I realized the importance of knowing everything in detail. I also learned that you have to be specific when ‘telling stories’ in a paper.”

Transfer. It was surprising to see that 86% of students feel that they find it easy to transfer knowledge between the different sections of the work as well as between subjects. Comments like “I have learnt that in order to really understand the key concepts of A&P you have to integrate the various chapters/bodily processes rather than to learn it in isolation. A&P is like a box that must be built into a whole in order to make use of it” and “I find it exciting to find links and realizations from one chapter to another” illustrate students’ realization of the importance of transfer knowledge. Students also showed that they appreciate it that is important to understand one section before moving on to the next: “If I understand everything in the previous chapter and I can still remember the information I can connect it with the chapters. I’m doing now (but if I forget or didn’t understand I can’t relate). It makes it easier and interesting so I understand it.” Students were also able to relate between different subjects: “I find that aspects covered in anatomy and physiology and [Emergency Medical Care 1] are mutually supportive,” “Work I studied in other subjects relates quite nicely to what we do in A&P i.e. in microbiology we discussed similar physiological processes while in [Podiatric Medicine] we discuss similar anatomical structures,” and “There are topics that are related to pathophysiology and immunology that makes it easier to understand the modules.” However, there were students who had difficulty linking concepts between sections of the same subject: “It is hard for me to connect previous chapter to new work. I’m used to studying section by section but not putting them together” and “Sometimes it is hard to remember what I have done previously, depending on how much I understand.”

The problem identified by the students who struggle with transfer appears to be linked to their study method.

Involvement. According to Heath et al. (10), learning effectiveness in medical education is improved if students are exposed to multiple examples of a concept and provided with multiple representations of the content (blended approach). Within a constructivist learning environment, the learning effectiveness of the conceptual phase is often best supported by face-to-face instruction to assist with the construction of appropriate schemata (21). As stated by one student, “The physiology offered this term was good, the lecturer involved us as a class, by making us discuss some of the topics in class, and she explained the concepts and terms in an appropriate manner that I understand.” Eighty-six percent of students thought that the practicals were interesting, and 73% reported that it helped them to understand the theoretical concepts discussed during lectures. As stated by one student, “The glucose practical was that one could literally see the effects, which is nice to see, so practicals that one can see literally what’s happening will be very helpful and interesting.” The enriched intellectual stimulation supported by interactive computer-assisted presentations of scenarios used during animations and case studies can be used to support more advanced learning activities. As stated by two students, “I prefer animations to simplify and explain difficult concepts e.g. brain, sensory and motor pathways etc.” and “The more we are able to participate the better we are able to understand as we will be learning activity.” These remarks by students emphasize the role of blended learning activities for anatomy and physiology.

Grades. Students find it difficult to realize that they need to understand anatomy and physiology to be able to apply them in subjects such as pathology and diagnostics. Their main objective is just to get good grades; they are grade oriented (only 57% of students indicated that they feel that their marks are a true reflection of the effort they put into studying) rather than learning oriented. As stated by one student, “Instead of ‘owning’ the material, I simply studied for tests.” Eison, as cited in Beatty and Feldman (3), identified style in terms of students’ attitudes toward grading and learning. His work was based on the idea that students fall into two categories: learning-oriented students, who see the classroom as a place to find ideas and information that is important to them, and grade-oriented students, who see the classroom as a place where they will be tested and graded to obtain a qualification. Eison compared learning styles of adult students (age: 32–67 yr) and young adults (age: 23–31 yr) with those of traditional-age students (age: 17–22 yr). The adult groups scored higher on learning orientation. The younger students were more inclined to have test anxiety (3). As stated by one student, “So yes I think stress, time management and not having enough time to enjoy the work in class did lead to many of us failing the paper.” The preferences of teaching method for the groups were also different. Younger students prefer short frequent quizzes drawn from clearly specified study areas, graded assignments, and extra credit activities. As stated by two students, “What may have improved the outcomes in our case is the inclusion of mini mock tests.” and “... it could help to provide tutorials on cycles and steps of concepts...” Adults, on the other hand, are less concerned with the testing policy, enjoy less structured, ungraded learning opportunities, and are not so concerned about their final course grade. The learning styles of the
perceptual and cognitive differences are entertained by using a blended teaching approach. The varied methodologies help to make the content interesting, which motivates students to go the extra mile. This requires the factors that contribute to learning satisfaction and, ultimately, success.

The support of the learning community in the form of social interactions between students and with the lecturing staff plays an integral role in establishing learning satisfaction. Students identified discussions as a vital part of their learning. The structured discussions during lectures and practicals as well as informal discussions in their own study groups helped them to develop a deeper understanding of physiological concepts and processes.

To fully attain learning satisfactions, students need to perceive the learning to meet their expectations of what is required to be a successful practitioner once they qualify. They need to be able to transfer the knowledge between subjects and within the same subject to form a “big picture” of how physiology is related to their clinical subjects and career of choice. The outcome of learning is improved if they are actively involved in the learning process.

If the factors involved in perceived learnability, support, and effectiveness are identified and managed properly, they will lead to perceived learning satisfaction and, ultimately, success.

Conclusions

Students that find that the learning environment satisfies their needs to become a successful professional are motivated to go the extra mile. This requires the factors that contribute to learning satisfaction to be in place.

The learnability of physiology is improved when students’ perceptual and cognitive differences are entertained by using a blended teaching approach. The varied methodologies help to make the content interesting, which motivates students to study.

Social community support of students at institutions of higher education has become challenging as students with different cultural backgrounds enter. Sensitivity regarding social interactions, the use of cultural tools in teaching, and the challenge to help students reach goals beyond their “comfort zone” are vital in the current learning environment.

22. Reeves TC. How do you know they are learning?: the importance of alignment in higher education. *Int J Learn Technol* 2: 294–309, 2006.

