A simple, inexpensive model to demonstrate how contraction of GI longitudinal smooth muscle promotes propulsion

Heidi L. Lujan and Stephen E. DiCarlo
Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan

Submitted 1 December 2014; accepted in final form 21 January 2015

Peristalsis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal muscle relaxes orad to the bolus and contracts on the aborad side of the bolus. This activity is propagated over varying distances in the different segments of the gastrointestinal (GI) tract. Peristaltic movements are usually directed toward the anus and are due to the organization of the myenteric plexus, which resides between the circular and longitudinal muscle layers.

It is relatively easy to understand how contraction of the circular muscle behind the bolus and relaxation of the circular muscle in front of the bolus propels the object along the GI system toward the anus. However, how contraction of longitudinal muscle on the aborad side of the bolus promotes propulsion is difficult for students to grasp. To help students understand how contraction of the longitudinal muscle on the aborad side of the bolus promotes propulsion, we used a simple, inexpensive model, a “finger trap” (also known as a Chinese finger trap, a Chinese finger puzzle, Chinese thumb cuff, Chinese handcuffs, and similar alternatives). The finger trap is a simple toy that traps the fingers in opposite ends of a small cylinder woven from bamboo and can be purchased online from a number of novelty toy suppliers or through amazon.com. Each student received a finger trap and marble (Fig. 1), and the instructor used a much larger (~5 ft long) version of a finger trap (Fig. 2). Specifically, the instructor used a Jacket Rod Cover (Stick Jacket Rod Cover) that is constructed (woven) like a finger trap and maintains similar functional properties (i.e., the braided polyethylene filament behaves much like the finger trap). Its intended use is to fit over fishing poles to prevent rod tangles. The Jacket Rod Cover can be purchased online from various fishing supply companies or through amazon.com.

To use this model, students were first told that when the longitudinal muscle contracts, the segment shortens (Fig. 3, A and B). Shortening of the segment enlarges (widens) the lumen,
reducing the resistance to propulsion. Students confirmed these
statements by pushing the ends of their traps together and
noting the widening of the lumen (Fig. 3, C and D). Next,
students held the trap vertically and dropped a marble into the
top opening (Fig. 1). As expected, the marble quickly became
stuck within the lumen of the trap. Subsequently, shortening of
the segment by pushing the ends toward the middle enlarged (widened) the lumen, and the marble rapidly fell
to the floor and bounced about the room.

After this explanation and demonstration, students were
shown that when the ends of the Jacket Rod Cover were pushed
toward the middle, the lumen enlarged. Specifically, to dem-
onstrate this concept, the Jacket Rod Cover was suspended on
an IV pole, and a 27-mm rubber ball was dropped into the
opening at the top (Fig. 2). As expected, the ball quickly
became stuck within the lumen of the model. Subsequently,
shortening of the segment by pushing the ends toward the
middle enlarged (widened) the lumen, and the ball rapidly fell
to the floor and bounced about the room.

This simple and inexpensive model, which required only
seconds to demonstrate, helped to focus attention and break the
monotony of a lecture while demonstrating an important and
difficult to grasp concept. Furthermore, a simple working
model is in itself more engaging and inspiring than copious
content delivered from someone’s mouth (1). Accordingly,
activity-based models are valuable for nurturing our students’
innate propensity and desire to learn. Finally, because much
of the GI wall contains both an outer longitudinal muscle layer
and an inner circular muscle layer, a thorough understanding of
how these muscle layers interact to cause propulsion is impor-
tant for understanding GI motility.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS
Author contributions: H.L.L. and S.E.D. conception and design of research;
H.L.L. and S.E.D. performed experiments; H.L.L. and S.E.D. prepared figures;
H.L.L. and S.E.D. drafted manuscript; H.L.L. and S.E.D. edited and revised
manuscript; H.L.L. and S.E.D. approved final version of manuscript.

REFERENCE
1. Giuliodori MJ, Lujan HL, DiCarlo SE. Classic experimentation and
working models for engaging and inspiring students. Adv Physiol Educ 36: