Aerobic exercise and other healthy lifestyle factors that influence vascular aging

Jessica R. Santos-Parker, Thomas J. LaRocca, and Douglas R. Seals
Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado

Submitted 14 July 2014; accepted in final form 8 October 2014

CARDIOVASCULAR DISEASES (CVDs) are the leading cause of morbidity and mortality in modern societies. Advancing age is the primary factor for CVD, with >90% of CVD occurring in middle-aged/older (MA/O) adults (58, 86). With the aging of the “baby boomer” generation (adults born between 1946 and 1964), the number of older adults in the United States is expected to double between now and 2050 (110a). As a result, a new epidemic of “boomer-driven” CVDs is projected during this period. Indeed, a 2011 American Heart Association policy statement predicted that without effective intervention, largely as a result of population aging, 40% of United States adults will have one or more forms of CVD by 2030 and medical costs will triple (41). To address this impending biomedical challenge, it will be essential to identify and implement preventive strategies and interventions that will delay and reverse the development of CVD.

Aging leads to increased risk of CVD primarily through the development of arterial dysfunction, which is largely attributable to two physiological changes: stiffening of the large elastic arteries (the aorta and carotid arteries) and the development of systemic vascular endothelial dysfunction (50). These changes also contribute to other age-related declines in function, including cognitive and motor impairments (40, 78, 98, 110, 119). In contrast to aging, healthy lifestyle strategies generally have been linked to reduced CVD risk (26). Over the past two decades, our laboratory has studied the effects of regular aerobic exercise, other healthy lifestyle factors, and, more recently, potential alternative/complementary strategies (e.g. nutraceuticals) on vascular aging and the related mechanisms (Fig. 1) (32, 36, 45, 46, 52, 91). In the following sections, we will summarize this work, starting with the basic physiology of each process in question, and then discuss our key findings on the effects of aerobic exercise and other strategies for promoting healthy vascular aging. For additional details, the reader is directed to our recent and earlier reviews from our laboratory.

Large Elastic Artery Stiffness, Aging, and Exercise

Changes with aging. With contraction of the left ventricle (LV), ejection of blood from the heart creates a pressure wave that travels along the aorta at a velocity dependent on the stiffness and thickness of the artery. As the pressure wave moves forward, it encounters resistance due to branching/thinning of the arterial tree. This creates a reflected pressure wave that returns at a velocity dependent on structural properties of the arterial wall (57, 73). In healthy young individuals, the reflected pressure wave returns to the heart during diastole (65). However, with advancing age, the large elastic arteries (e.g., the aorta and carotid arteries) stiffen, resulting in faster velocities for the forward and reflected pressure waves (the latter returning to the heart during systole) (48). This causes an increase in systolic blood pressure with unchanged or decreased diastolic blood pressure as well as a consequent increased pulse pressure (increased pressure pulsatility), which causes microvascular tissue damage, particularly to vulnerable high flow-dependent organs such as the heart, brain, and kidneys (50, 51, 62, 77). Aortic impedance (increased resistance to LV ejection of blood) is also increased, leading to LV hypertrophy and an increased risk of myocardial infarction and heart failure (50, 51, 62).

Assessment. Large elastic arterial stiffness is commonly assessed by measuring aortic pulse wave velocity (aPWV) or local compliance of the carotid artery (Fig. 2, left). aPWV, the clinical gold standard method because of its ability to predict future CVD risk (4, 63, 65), is determined by assessing the time delay between pressure waves occurring at proximal and distal sites along the aorta (typically carotid and femoral arteries). The faster the pressure wave travels along the aorta, the stiffer the artery. aPWV increases with advancing age even in nonhypertensive adults free of clinical CVD (4, 50, 107). Carotid artery stiffness is assessed using ultrasonography to image changes in arterial diameter throughout the cardiac cycle while simultaneously measuring changes in arterial pressure by applanation tonometry in the contralateral carotid artery. From these measures, carotid artery compliance (inversely proportional to stiffness) and carotid β-stiffness (directly proportional to
to stiffness) can be calculated. Carotid artery compliance decreases with advancing age even in adults free of clinical CVD (69, 108).

Influence of exercise. MA/O men and women who are endurance exercise trained have lower aPWV and greater carotid artery compliance compared with their age-matched sedentary peers (53, 69, 107, 108, 111). Exercise with an aerobic component (e.g., running, swimming, or rowing) is associated with lower large elastic artery stiffness (higher carotid artery compliance) with age compared with sedentary age-matched adults (12, 20, 69, 75, 99, 108), whereas solely resistance exercise-trained MA/O adults demonstrate, if anything, elevated stiffness compared with sedentary control subjects (Table 1) (66). However, MA/O rowers who perform a combination of aerobic- and resistance-based training have reduced arterial stiffness compared with sedentary adults and similar arterial stiffness to their aerobic-exercising peers (12). This suggests that combining aerobic training with resistance training may rescue arterial stiffness and offset the effects of resistance training alone. Importantly, aerobic exercise interventions in MA/O men and women ranging from 12 to 16 wk reduce aPWV and increase carotid artery compliance (Table 1) (39, 69, 99, 108, 125), demonstrating that, in addition to its preventive actions, aerobic exercise also can be viewed as a therapy for destiffening large elastic arteries with aging.

Mechanisms. Age-associated stiffening of the large elastic arteries is mediated by both functional changes involving vascular smooth muscle tone and structural changes in the arterial wall, including extracellular matrix remodeling (increases in collagen deposition and decreases in elastin) and the formation of advanced glycation end products, which cross-link these structural proteins and confer additional stiffening (50, 51, 61, 97). As with functional changes to smooth muscle, structural changes to the arterial wall may be caused and/or sustained by the development of age-related oxidative stress and inflammation (described below) (Fig. 3) (50, 51, 114, 117).

Fig. 1. Aging, arterial dysfunction, and cardiovascular disease (CVD) risk. Aging increases the risk of CVDs through the development of arterial dysfunction (vascular endothelial dysfunction and stiffening of large elastic arteries). As such, aerobic exercise and other evidence-based strategies that either prevent or reverse age-related arterial dysfunction are an important focus for biomedical research. [Modified from Ref. 91.]

Fig. 2. Assessment of arterial stiffness and vascular endothelial function in human subjects and preclinical rodent models. *Left:* arterial stiffness assessed by measuring the time delay (Δt) between pressure waves at different arterial sites (aortic pulse wave velocity). *Right:* vascular endothelial function assessed by monitoring forearm blood flow (FFB) in response to ACh, measuring brachial artery dilation in response to increased blood flow [flow-mediated dilation (FMD)], or determining ACh-induced changes in arterial diameter in arteries isolated from experimental animals.
Studies in human subjects providing mechanistic insight into the effects of aerobic exercise on age-associated large elastic artery stiffening have been limited. Preclinical (rodent) models have played an instrumental role in allowing the assessment of tissues difficult to obtain in humans (e.g., the aorta and carotid arteries), examination of mechanisms involved, and implementation of interventions in a tightly controlled environment within a shorter timeframe. Similarly to humans, rodents demonstrate age-related large elastic artery stiffening (31, 36, 54, 56, 74). In our initial study (31) in mice, we found that 10–14 wk of voluntary wheel running in old previously sedentary animals reduced carotid artery incremental stiffness, consistent with the destiffening effects of swim training previously reported in the aorta of rats (74). Voluntary wheel running also completely reversed nitrotyrosine staining (a cellular footprint of oxidative stress), collagen types I and III, transforming growth factor-β (a profibrotic cytokine), smooth muscle α-actin (a marker of collagen-synthesizing phenotype), and calcification in the artery. However, voluntary wheel running appeared to have no effect on elastin degradation with aging (31). Recent preliminary data from our laboratory have also suggested that voluntary wheel running in old mice reduces aPWV, which is associated with reductions in advanced glycation end product cross-linking of proteins in the aorta (Table 1).

In agreement with the above findings that voluntary wheel running reduces stiffness and oxidative stress in carotid arteries of old mice, acute supraphysiological infusion of the potent antioxidant ascorbic acid (vitamin C) increases carotid artery compliance in sedentary postmenopausal women to levels similar to their endurance exercise-trained counterparts (Table 1) (70). Thus, aerobic exercise may preserve carotid artery compliance in trained postmenopausal women by reducing oxidative stress. These effects of vitamin C have not been observed in sedentary MA/O men (28), suggesting that other factors may contribute to age-related arterial stiffening in men. Collectively, these data from rodent models and studies of human subjects indicate that aerobic exercise may reverse

Table 1. Summary of age- and exercise-related differences in arterial stiffness and the mechanisms involved

<table>
<thead>
<tr>
<th></th>
<th>Young Sedentary Subjects</th>
<th>Older Sedentary Subjects</th>
<th>Older Exercising Subjects</th>
<th>Older Sedentary Subjects After Exercise Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic pulse wave</td>
<td>Low (−700 cm/s)</td>
<td>High (−1100 cm/s)</td>
<td>Low (high with resistance training)</td>
<td>Low</td>
</tr>
<tr>
<td>velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotid compliance</td>
<td>High (−0.2 mm²/mmHg)</td>
<td>Low (−0.11 mm²/mmHg)</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanisms</td>
<td>Oxidative stress</td>
<td>Structural remodeling</td>
<td>Lack of structural remodeling</td>
<td>Normalization of structural factors</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Supporting</td>
<td>Collagen</td>
<td>↑↑∗†</td>
<td>↑†</td>
<td>↓†</td>
</tr>
<tr>
<td>observations</td>
<td>Elastin</td>
<td>↑↑†</td>
<td>↑†</td>
<td>↓†</td>
</tr>
<tr>
<td></td>
<td>Advanced glycation</td>
<td>↑↑†</td>
<td>↑↑†</td>
<td>↓†</td>
</tr>
<tr>
<td></td>
<td>Compliance with vitamin</td>
<td>↑∗</td>
<td>↓</td>
<td>↓†</td>
</tr>
<tr>
<td>C</td>
<td>Transforming growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>factor-β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrotyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ↑, Increase; ↓, decrease. *Humans; †mice.

Studies in human subjects providing mechanistic insight into the effects of aerobic exercise on age-associated large elastic artery stiffening have been limited. Preclinical (rodent) models have played an instrumental role in allowing the assessment of tissues difficult to obtain in humans (e.g., the aorta and carotid arteries), examination of mechanisms involved, and implementation of interventions in a tightly controlled environment within a shorter timeframe. Similarly to humans, rodents demonstrate age-related large elastic artery stiffening (31, 36, 54, 56, 74). In our initial study (31) in mice, we found that 10–14 wk of voluntary wheel running in old previously sedentary animals reduced carotid artery incremental stiffness, consistent with the destiffening effects of swim training previously reported in the aorta of rats (74). Voluntary wheel running also completely reversed nitrotyrosine staining (a cellular footprint of oxidative stress), collagen types I and III, transforming growth factor-β (a profibrotic cytokine), smooth muscle α-actin (a marker of collagen-synthesizing phenotype), and calcification in the artery. However, voluntary wheel running appeared to have no effect on elastin degradation with aging (31). Recent preliminary data from our laboratory have also suggested that voluntary wheel running in old mice reduces aPWV, which is associated with reductions in advanced glycation end product cross-linking of proteins in the aorta (Table 1).

In agreement with the above findings that voluntary wheel running reduces stiffness and oxidative stress in carotid arteries of old mice, acute supraphysiological infusion of the potent antioxidant ascorbic acid (vitamin C) increases carotid artery compliance in sedentary postmenopausal women to levels similar to their endurance exercise-trained counterparts (Table 1) (70). Thus, aerobic exercise may preserve carotid artery compliance in trained postmenopausal women by reducing oxidative stress. These effects of vitamin C have not been observed in sedentary MA/O men (28), suggesting that other factors may contribute to age-related arterial stiffening in men. Collectively, these data from rodent models and studies of human subjects indicate that aerobic exercise may reverse

Fig. 3. Structural mechanisms of aging and aerobic exercise on arterial stiffness. Aging induces arterial stiffness in part via structural changes to the arterial wall. Oxidative stress and inflammation involving excessive superoxide (O₂·) production and inflammatory cytokines mediate increases in collagen deposition, fragmentation of elastin, protein oxidation (nitrotyrosine), and formation of advanced glycation end products (AGEs). Aerobic exercise inhibits and/or reverses these age-related changes, resulting in suppression of arterial stiffening.
Vascular Endothelial Dysfunction, Aging, and Exercise

Changes with aging. The vascular endothelium consists of a single layer of cells lining the blood vessel walls. In the past, the endothelium was believed to be an inert physical barrier between the blood and arterial wall/surrounding tissue. However, the endothelium is now understood to be a dynamic organ that plays a central role in the control of vascular tone, metabolism, immune function, thrombosis, fibrinolysis, and many other processes (11, 89). Advancing age shifts the endothelium to a prothrombotic, profibrinolytic, proinflammatory, and vasoconstrictive phenotype, individually and collectively characterized as vascular endothelial dysfunction (93, 121). One key cause of age-associated vascular endothelial dysfunction is reduced bioavailability of the vascular protective and vasodilatory molecule nitric oxide (NO) (16, 93, 105, 112, 113).

Assessment. Vascular endothelial function is commonly assessed by measuring endothelium-dependent dilation (EDD), which is the dilation of blood vessels in response to a stimulus (mechanical or chemical) that evokes NO production via the activation of the enzyme endothelial NO synthase (eNOS). NO released by the endothelium diffuses into the surrounding smooth muscle, leading to relaxation and consequent dilation of the artery and increased blood flow that can be measured by several methods (16, 91, 93, 113). The best characterized and most widely used techniques for assessing EDD in humans include 1) ultrasound assessment of brachial artery dilation in response to an increase in blood flow (mechanical stimulus) produced by temporary forearm ischemia [brachial artery flow-mediated dilation (FMD)] and 2) increases in forearm blood flow in response to ACh infusion (FBFACH; pharmacological stimulus) (93). Whereas brachial artery FMD is considered a measure of large muscular artery EDD, FBFACH is viewed as an indicator of microvascular (resistance vessel) EDD (93). In rodents, isolation of arteries (the aorta, carotid arteries, etc.) to measure the change in dilation in response to ACh incubation (pharmacological stimulus) is used to assess EDD (Fig. 2, right) (14, 25, 36, 54, 72). Both brachial artery FMD and FBFACH are reduced with advancing age even in adults free of major CVD risk factors or clinical disease, indicating endothelial dysfunction as a primary effect of aging (10, 18, 22, 29, 103, 105, 106).

Influence of aerobic exercise on brachial artery FMD. Brachial artery FMD is lower in healthy, sedentary older men compared with young men (10, 29, 33, 82). However, this age-related decline in function is not observed in endurance exercise-trained men (29, 30, 33, 34, 82). Moreover, an intervention consisting of several weeks of brisk walking restores brachial artery FMD in previously sedentary MA/O men to levels similar to young and older endurance exercise-trained subjects (Table 2) (83). However, the effects of aerobic exercise on brachial artery FMD in older (postmenopausal) women remain unclear. Cross-sectional and interventional studies have shown either no differences (9, 80, 101) or greater (1, 6, 37, 100, 124) brachial artery FMD in endurance exercise-trained compared with sedentary postmenopausal women. A recent study (71) from our laboratory found that a 12-wk aerobic exercise intervention increased brachial artery FMD in estrogen-supplemented, but not estrogen-deficient, postmenopausal sedentary women, suggesting that estrogen may play a permissive role in inducing the beneficial effects of aerobic exercise on vascular endothelial function with aging in women (Table 3). Thus, aerobic exercise is consistently associated with enhanced brachial artery FMD with aging in men and estrogen-supplemented women but not in estrogen-deficient women.

Influence of aerobic exercise on changes in FBFACH. Among healthy men, MA/O subjects have lower FBFACH compared

Table 2. Summary of age- and exercise-related differences in vascular endothelial function and the mechanisms involved in men and rodents

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Young Sedentary Subjects</th>
<th>Older Sedentary Subjects</th>
<th>Older Exercising Subjects</th>
<th>Older Sedentary Subjects After Exercise Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBFACH</td>
<td>High (~16 ml·100 ml tissue⁻¹·min⁻¹ maximum)</td>
<td>Low (~10 ml·100 ml tissue⁻¹·min⁻¹ maximum)</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>FMD in the brachial artery</td>
<td>High (~8 % change)</td>
<td>Low (~3 % change)</td>
<td>High (low with resistance training)</td>
<td>High</td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidative stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDD</td>
<td></td>
<td></td>
<td>Similar to others with eNOS inhibition</td>
<td>Similar to others with eNOS inhibition</td>
</tr>
<tr>
<td>Nitrotyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADPH oxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDD with Tempol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMD with vitamin C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF-κB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMD with salsalate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FBFACH, forearm blood flow in response to ACh infusion; FMD, flow-mediated dilation; NO, nitric oxide; EDD, endothelium-dependent dilation; eNOS, endothelial NO synthase. *Humans; †mice.
with young control subjects (18, 102, 104, 106). However, these age-related differences are not observed in young and old endurance exercise-trained men (18, 102). Thus, it appears that aerobic exercise also protects against the development of microvascular endothelial dysfunction with aging in men. Moreover, 12 wk of brisk walking restores FBF$_{ACh}$ in older previously sedentary men to levels similar to young and old endurance exercise-trained men (Table 2) (18), indicating that exercise can be viewed as a therapy in this group. These studies, all in male subjects, demonstrate that greater EDD in young and older exercising men is mediated by greater NO bioavailability, as all group differences were abolished by inhibition of eNOS (infusion of the eNOS inhibitor N^G-monomethyl-l-arginine) (102). However, the effects of aerobic exercise on microvascular EDD (FBF$_{ACh}$) in postmenopausal women remain unknown.

Influence of exercise characteristics. The type, frequency, intensity, and duration of exercise training required to preserve/improve vascular endothelial function with advancing age is incompletely understood. Endurance exercise-trained MA/O subjects engaged in walking/running type exercise have greater brachial artery FMD than their sedentary counterparts, but this has not been consistently shown for other types of aerobic exercise (cyclists/swimmers) (2, 18, 75, 76, 83, 90, 100, 109, 124). Moreover, the minimal available evidence indicates that resistance training in MA/O subjects does not exert beneficial effects on brachial artery FMD (9). Multiple studies have indicated that at least 3 days of aerobic exercise per week, at a target range of 65–80% of maximal heart rate, for 30–50 min/day, for 2–6 mo elicit improvements in brachial artery FMD (2, 18, 67, 76, 83, 90, 100, 125). Thus, although the data suggest that moderate aerobic exercise is sufficient to preserve/improve EDD with aging in men and, perhaps, selective groups of women, further studies are needed to gain insights into the exact type, frequency, intensity, and duration of exercise training needed.

Mechanisms. More is known about the mechanisms underlying the beneficial effects of aerobic exercise on age-related vascular endothelial dysfunction than arterial stiffness due to more extensive data from preclinical studies and easier access to the endothelium via the peripheral vasculature of humans. Using these models and techniques, oxidative stress and inflammatory signaling have been identified as key pathways involved in modulating vascular endothelial function. With advancing age, these pathways become dysregulated, leading to reduced NO bioavailability and vascular endothelial dysfunction. As explained below, aerobic exercise is believed to preserve/restore vascular endothelial function by reversing age-related oxidative stress and inflammation (Fig. 4) (20, 92–95).

Oxidative stress. Age-related vascular endothelial function is associated with increased oxidative stress, defined as excess bioactivity of ROS relative to antioxidant defenses (93, 94). Key age-related changes that contribute to oxidative stress include increases in superoxide production (by mitochondria, NADPH oxidase, and/or eNOS uncoupling) and decreases in endogenous antioxidant enzyme systems, including SODs (93, 94). Superoxide reduces NO bioavailability by interacting with NO to form peroxynitrite, a potent intermediary ROS. Peroxynitrite causes nitration of tyrosine residues on proteins (nitrotyrosine) and the uncoupling of eNOS, leading to more superoxide production and reduced NO (Fig. 4) (5, 27, 42).

We have performed translational studies in mice and humans to examine the effects of aerobic exercise on age-related oxidative stress in the vasculature. For example, we have found that incubation with the superoxide scavenger Tempol restores EDD in arteries of old sedentary mice but has no effect on young control and old voluntary wheel-running mice (24). Similarly, in older sedentary men, acute infusion of vitamin C restores brachial artery FMD to levels observed in young sedentary and old endurance exercise-trained men (Table 2) (28, 102). Vitamin C infusion also improves FMD in sedentary and aerobic exercise-trained estrogen-deficient postmenopausal women but not in estrogen-supplemented women who participated in an aerobic exercise intervention (Table 3) (71). Collectively, these translational studies suggest that suppression of superoxide-

Table 3. Summary of age- and exercise-related differences in vascular endothelial function and the mechanisms involved in women

<table>
<thead>
<tr>
<th>FBF$_{ACh}$ in the brachial artery</th>
<th>FMD in the brachial artery</th>
<th>Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young Sedentary Subjects</td>
<td>Older Sedentary</td>
<td>NO</td>
</tr>
<tr>
<td>Estrogen-Deficient Subjects</td>
<td>Subjects</td>
<td>Oxidative stress</td>
</tr>
<tr>
<td></td>
<td>Older Sedentary</td>
<td>Inflammation</td>
</tr>
<tr>
<td>Estrogen-Supplemented Subjects</td>
<td>Subjects</td>
<td>Supporting observations</td>
</tr>
<tr>
<td></td>
<td>Older Exercising</td>
<td>EDD</td>
</tr>
<tr>
<td>Estrogen-Deficient Subjects</td>
<td>After Exercise Intervention</td>
<td>Similar to young subjects with eNOS inhibition</td>
</tr>
<tr>
<td></td>
<td>Subjects</td>
<td>FMD with vitamin C</td>
</tr>
</tbody>
</table>
| | After Exercise Intervention| NF-$

Downloaded from http://advan.physiology.org by 10.220:32.2 on June 19, 2017
mediated oxidative stress plays a role in the beneficial effects of aerobic exercise on vascular endothelial dysfunction with aging.

Parallel observations in rodent models and human subjects further support the idea that aerobic exercise reduces vascular oxidative stress. For example, 10–14 wk of voluntary wheel running reduces aortic nitrotyrosine and NADPH oxidase (p47phox subunit) expression in old previously sedentary mice (24). Moreover, the NADPH oxidase inhibitor apocynin restores EDD in old sedentary mice to levels similar to young control and old voluntary wheel-running mice but has no effect on the latter groups (24). Similarly, in humans, expression of nitrotyrosine and NADPH oxidase (p47phox subunit) is higher in biopsied vascular endothelial cells from the brachial arteries of older sedentary men than in cells from young sedentary and old endurance exercise-trained men (Table 2) (82).

Whereas differences in arterial NADPH oxidase and nitrotyrosine reflect influences on prooxidant processes, differences in antioxidant capacity with exercise also could contribute to enhanced endothelial function with aging. In old voluntary wheel-running mice, the activities of aortic SODs, including manganese (mitochondrial), copper-zinc (cytosolic), and extracellular SODs, are increased relative to old control (nonrunning) mice (24). Similarly, in humans, expression of manganese SOD in biopsied vascular endothelial cells and activity of circulating (plasma) extracellular SOD are greater in aerobically exercising than in sedentary MA/O men and similar to levels observed in young men (Table 2) (82). Taken together, these observations indicate that advancing age leads to the development of oxidative stress in the vasculature and that aerobic exercise exerts its vascular-protective effects by reducing oxidative stress via suppression of prooxidant and stimulation of antioxidant pathways.

Inflammation. Aging results in the suppression of adaptive immunity and upregulation of innate immune signaling, leading to a phenotype of chronic low-grade inflammation known as “inflammaging” (88). A central mediator of age-associated increases in vascular inflammation is the proinflammatory transcription factor NF-κB (21, 22). Activation of the NF-κB pathway leads to upregulation of proinflammatory cytokines and NADPH oxidase (13, 23, 93, 94). All of these events stimulate additional production of superoxide, which reacts with NO, reducing its bioavailability and further contributing to vascular dysfunction. NF-κB also can be activated by cytokines and ROS, perpetuating this cycle of adverse signaling (Fig. 4) (23).

Studies in rodent models and human subjects have provided evidence showing that aerobic exercise improves EDD by reducing vascular inflammation. Our preclinical work showed that vascular NF-κB expression in old mice that have access to running wheels for 10–14 wk is normalized to levels of young mice. This was associated with lower expression of proinflammatory cytokines (e.g., IL-6) and NF-κB is lower (similar to levels in young) in older endurance exercise-trained men compared with their sedentary counterparts and is associated with preserved brachial artery FMD. When salsalate (a potent NF-κB-inhibiting agent) is given to young control, MA/O sedentary, and MA/O endurance exercise-trained subjects for 4 days, endothelial cell NF-κB expression is reduced and brachial artery FMD is restored in MA/O sedentary subjects to levels similar to MA/O endurance-exercise trained and young subjects, with no effects on the latter groups (Tables 2 and 3) (116). Vitamin C infusion abolishes differences in FMD among these groups, indicating...
that these effects of regular aerobic exercise in inhibiting age-related inflammation-associated suppression of brachial artery FMD are mediated by reduced oxidative stress.

In summary, aerobic exercise preserves and restores vascular endothelial function with advancing age. Evidence suggests that the major underlying mechanism is the modulation of oxidative stress and inflammatory pathways.

Exercise: Vascular Protection From “Adverse Factors”

Previously, it was believed that the CVD-preventing effects of aerobic exercise were due solely to its ability to improve traditional risk factors such as blood pressure, plasma lipids, blood glucose, and body weight/fat. However, epidemiological studies (68) indicate that modification of these risk factors only accounts for 50% or less of the CVD risk-lowering effects of aerobic exercise. Our work suggests a complementary hypothesis: aerobic exercise may exert its CVD risk-lowering effects not only by lowering traditional risk factors but also by creating a “resistance” against the harmful effects of existing risk factors as well (95, 115). This idea is supported by our observations on plasma low-density lipoprotein (LDL)-cholesterol, a harmful CVD risk factor, and vascular endothelial function. Older sedentary adults with borderline high LDL-cholesterol have lower brachial artery FMD compared with their counterparts with normal levels of LDL-cholesterol. However, there are no differences in brachial artery FMD among groups of young sedentary and older endurance exercise-trained adults with borderline high or normal LDL-cholesterol, suggesting young age and aerobic exercise protect against the adverse influence of elevated plasma LDL-cholesterol on vascular endothelial function (115). This hypothesis is further supported by the results of our recent study (19) demonstrating that aerobic exercise training in older adults protects against the effects of impaired fasting blood glucose, another adverse factor, on endothelial function. More recently, we demonstrated that old sedentary mice given access to a running wheel for 10–14 wk are protected against “Western” (high fat) diet-induced vascular endothelial dysfunction, and this was mediated by a reduction in superoxide-associated oxidative stress and an increase in NO bioavailability (36).

Taken together, these findings suggest aerobic exercise protects aging arteries not only by lowering risk factors but also by inducing a resistance against currently existing harmful levels of risk factors (Fig. 5).

Other Healthy Lifestyle Factors and Vascular Aging

Evidence suggests that other healthy lifestyle behaviors may act through similar pathways to aerobic exercise and, therefore, be alternative (or complementary) strategies for preserving vascular function and health with aging (Fig. 6) (94). Excessive abdominal adiposity (indicated by waist circumference > 40 in. in men and >35 in. in women) is associated with impaired vascular function and increased risk of CVD (3, 15, 47, 118, 122, 127). Consistent with this observation, energy restriction-induced weight loss associated with significant reductions in total and abdominal body fat reverses vascular dysfunction in MA/O adults at least in part by reducing oxidative stress and increasing NO bioavailability (17, 81), a finding that is supported by parallel studies (56, 85, 126) demonstrating that caloric restriction protects against/reverses age-related endothelial dysfunction in rodents. In addition to total daily energy intake, diet composition also has an important modulatory effect on vascular aging. Supplementing normal dietary intake with more fruits and vegetables, and switching to established healthy diets, including the DASH and Mediterranean diets, improve vascular function in MA/O adults (7, 49, 60, 87). Reduced dietary Na\(^+\) intake in MA/O obese or hypertensive adults is associated with greater EDD (brachial artery FMD), reduced large elastic artery stiffness, and increased NO bioavailability as a result of reduced superoxide-associated oxidative stress (35, 44, 45). In general, diets high in K\(^+\), fiber, seeds, whole grains, and nuts and low in Na\(^+\), saturated fats, and cholesterol are associated with enhanced vascular function in groups of MA/O adults (7, 49, 60, 87, 94).

Although healthy lifestyle behaviors appear to be the best method for protecting against vascular aging, many older adults do not meet the minimal recommended guidelines for exercise or consume a healthy diet. As a result, there is significant interest in pharmacological agents, both pharmaceuticals and nutraceuticals (naturally occurring, bioactive food compounds) that may induce some of the same beneficial, vascular-protective effects as healthy lifestyle behaviors (94). Most prescription drugs that improve vascular function in
humans have been tested in patients with existing clinical cardiometabolic diseases or major risk factors for these disorders and are not indicated for treating vascular aging per se (38, 59, 64, 94, 120). However, certain nutraceutical compounds may activate or inhibit the same signaling pathways as healthy lifestyle behaviors and, therefore, produce at least some of the same beneficial effects. These nutraceutical compounds as an alternative strategy may be appealing for several reasons, including their lower cost to purchase and manufacture, natural origin, and less time-consuming regulatory approval process (compared with new prescription pharmaceuticals). Although many studies in preclinical models and humans are underway to determine the potential vascular protective effects of a variety of these compounds in the context of vascular aging, in general, much more evidence is needed on efficacy in MA/O populations before nutraceuticals can be considered viable alternatives or complements to healthy physical activity and dietary practices.

Recently, our laboratory and others have been conducting exploratory translational investigations on nutraceuticals that target key pathways linked to vascular aging (e.g., oxidative stress and inflammation) that are modulated by aerobic exercise and healthy dietary intake (1, 8, 32, 36, 43, 52, 79, 84, 94, 96, 123). Examples include nitrate/nitrite supplementation (precursors of NO that may boost NO bioavailability and signaling), curcumin (an anti-inflammatory phenol found in the Indian spice turmeric), vitamin D (a fat-soluble vitamin with antioxidant/flammatory properties), MitoQ (a mitochondria-targeted antioxidant), trehalose (an autophagy-activating disaccharide found commonly in mushrooms and other foods), and sirtuin system activators like resveratrol (1, 8, 32, 36, 43, 52, 79, 84, 94, 96, 123). These agents and other compounds that demonstrate similar ability to prevent/reverse activation of adverse vascular aging processes hold promise for enhancing vascular function and health with advancing age (Fig. 6).

Overall Summary and Conclusions

Vascular aging is the major risk factor for CVD. With the aging of our population, there is a pressing need for preventive strategies and interventions that may reduce the risk of CVD. Aerobic exercise should be considered a “first line” strategy to protect against/reverse stiffening of the large elastic arteries and the development of vascular endothelial dysfunction, in part via favorable modulation of the causal mechanisms of vascular aging: oxidative stress, inflammation, structural changes to the arterial wall, and reduced NO bioavailability. Aerobic exercise not only improves conventional CVD risk factors, thus lessening their impact, but likely induces a resistance against the potentially harmful effects of a number of adverse factors to which our arteries are chronically exposed with advancing age. Other healthy lifestyle practices, including proper management of abdominal adiposity with aging, intake of a vascular-protective diet, and nutraceuticals that may convey at least some of the benefits of exercise and a healthy diet, also may prove helpful for preserving vascular function and preventing age-associated CVD.

GRANTS

This work was supported by National Institutes of Health Grants AG-013038 (MERIT), HL-107120, AG-031141, AG-006537, AG-000279, AG-022241, AG-020683, AG-016071, RR-000051/TR-001082, HL-007822, AG-031617, AG-033196, AG-000847, AG-039210, and HL-003840 and by American Heart Association Grant 0715735Z.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: J.R.S.-P., T.L.L., and D.R.S. conception and design of research; J.R.S.-P., T.L.L., and D.R.S. drafting/manuscript; J.R.S.-P., T.L.L., and D.R.S. analysis and interpretation of data; J.R.S.-P., T.L.L., and D.R.S. collected data; J.R.S.-P., T.L.L., and D.R.S. approved final version of manuscript; T.L.L. prepared figures.
REFERENCES

52. LaRocca TJ, Henson GD, Thorburn A, Sinder AL, Pierce GL, Seals DR, Gentile CL. Translational evidence that impaired autophagy contributes to arterial remodeling in 10.220.33.2 on June 19, 2017 http://advan.physiology.org/ Downloaded from

Refresher Course

LIFESTYLE FACTORS AND VASCULAR AGING

84. Seals DR, Kaplan RE, Gioiosa-Ryan RA, LaRocca TJ. You’re only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology (Bethesda) 29: 250–264, 2014.

