The history of “Exercise Is Medicine” in ancient civilizations

Charles M. Tipton
Department of Physiology, University of Arizona, Tucson, Arizona

Submitted 25 November 2013; accepted in final form 20 February 2014

Tipton CM. The history of “Exercise Is Medicine” in ancient civilizations. Adv Physiol Educ 38: 109–117, 2014; doi:10.1152/advan.00136.2013.—In 2007, the American College of Sports Medicine, with endorsement from the American Medical Association and the Office of the Surgeon General, launched a global initiative to mobilize physicians, healthcare professionals and providers, and educators to promote exercise in their practice or activities to prevent, reduce, manage, or treat diseases that impact health and the quality of life in humans. Emerging from this initiative, termed Exercise Is Medicine, has been an extensively documented position stand by the American College of Sports Medicine that recommended healthy adults perform 150 min of moderate dynamic exercise per week. The purpose of this article is to demonstrate the foundation for this global initiative and its exercise prescription for health and disease prevention has roots that began in antiquity more than two millennia ago. Individuals and concepts to remember are that Susruta of India was the first “recorded” physician to prescribe moderate daily exercise, Hippocrates of Greece was the first “recorded” physician to provide a written exercise prescription for a patient suffering from consumption, and the global influence of Galen from Rome combined with his recommendation on the use of exercise for patients in the management of disease prevailed until the 16th century. Historically intertwined with these concepts was exercise being advocated by select physicians to minimize the health problems associated with obesity, diabetes, and inactivity.

antiquity of Exercise Is Medicine; ancient exercise prescriptions; contributions of Susruta, Hippocrates, and Galen to Exercise Is Medicine

ON NOVEMBER 5TH, 2007, the American College of Sports Medicine (ACSM), with support and endorsement from the American Medical Association and Office of the Surgeon General, launched a global initiative with the intent to mobilize physicians, healthcare professionals and providers, and educators to incorporate exercise in their practices or activities with humans to prevent, reduce, manage, or treat chronic diseases that impact health and the quality of life (7, 41). Of the chronic diseases, few have more importance or interest to the exercise science community than physical inactivity, which Blair has termed as the “biggest” public health problem of the 21st century (14). Since the formulation of the Exercise Is Medicine (EIM) initiative, ACSM has formed 11 new committees to implement the global initiative (63), published a documented position stand containing 407 references, and provided a universal recommendation that healthy adults secure 150 min of moderate dynamic physical activity per week (20). In addition, during this same time interval, PubMed listed, as of January 30, 2014, a total of 56,691 citations under the heading of EIM (41).

However, the concept of EIM is not a 21st century original, as McKenzie, 95 yr ago, suggested such a relationship (39) and, in 1968, Peter Karpovich (31, p. 66) wrote:

...there is growing evidence on the preventive value of exercise, and it is possible that, in the not too distance future, physical education will become a part of medicine.

The intent of this article is to demonstrate that the foundation of EIM has roots from antiquity [antiquity ends with the death of Galen in 210 Common Era (CE) (3)] and to recognize physicians and philosophers who have contributed to EIM concepts. A secondary intent is to complete the historical record on the contributions from ancient civilizations to the emergence and acceptance of EIM. It must be acknowledged that aspects pertaining to exercise physiology have been previously discussed in historical articles (57, 58); however, their specific emphasis to and relevance for EIM are new and regarded as original contributions.

Before evaluating ancient information, readers must recognize that humans emerging from the caves of the Neolithic Age and migrating to the banks of the Indus, Nile, Tigris, Euphrates, and Yellow Rivers, which preceded the establishment of Greek and Roman societies, possessed great fear and trepidation concerning the ravages of disease, which they attributed to spirits, demons, curses, and/or supernatural forces (57). Consequently, these ancient humans believed that these “evil spirits” had to be controlled, appeased, or driven away before recovery from disease could occur and health be restored. However, of the river civilizations, only those involving the Indus Valley and associated with the banks of the Yellow River made contributions to EIM (57).

Contributions From the Indus River Civilization

Archeological excavations conducted in the Indus Valley of India less than a century ago revealed the existence of an ancient civilization that was in existence as early as 3300 Before CE (BCE) (48). The excavations demonstrated the existence of a myriad of human diseases and structures that revealed a major concern for sanitation and public health. Around 2000 BCE, the Indus Valley was invaded by Aryans (Indo-Europeans) who established the Hindu culture and subsequently wrote their sacred texts and formulated the tridosha (tridhatu) doctrine or the Indian humoral theory (32, 57). The relevance and importance of one of the sacred texts and its 1,028 hymns [the Rig-Veda (1500 BCE) (64)] to EIM are that 1) disease and health were the result of actions by their gods and 2) ancient Hindus were aware of the existence and importance of humors before the establishment of city-states in Greece (57). In addition, the acceptance of the tridosha doctrine (1500–800 BCE) provided explanations for the meaning of life and death and the relationship between health and disease (32). The essence of the doctrine was that the human body contained three doshas (humors) known as vayu, pitta, and

Address for reprint requests and other correspondence: C. M. Tipton, Dept. of Physiology, Univ. of Arizona, Gittings Bldg., 1630 University Ave., Tucson, AZ 85721 (e-mail: Tipton@email.arizona.edu).
kapha, with each having designated physiological functions (32). An important effect of the tridosa doctrine was that it removed the supernatural and importance of demons from the relationship between health and disease while establishing a foundation for the practice of medicine in ancient India. Implicit with the tridosa doctrine was 1) dosas controlled all functions of the body, 2) disease occurred when a dosa was dearranged or not in equilibrium with other dosas, and 3) health prevailed when the dosas were in equilibrium (57).

It is documented that during 600 BCE a physician named Susruta (Sushruta; Fig. 1) was a strong advocate of the tridosa doctrine who incorporated its concepts in his teaching of medicine and surgery at a university in Benares, India (24). Unknown is whether he considered exercise as a vital sign (49); however, it is known he was the first recorded physician to prescribe exercise for his patients and to indicate that “it should be taken every day” but taken only to half extent of his capacity as otherwise “it may prove fatal” (11, p. 486). In addition, before prescribing exercise, it was essential for the physician to consider the age, strength, physique, exercise terrain, and diet of the patient (11). Susruta advocated exercise because it made the body stout, strong, firm, compact, and light, enhanced the growth of limbs and muscles, improved digestion and complexion, prevented laziness (inactivity?), and reduced senility (11) while being absolutely conducive to a better preservation of health” (10, p. 185).

Although Susruta stated that “diseases fly from the presence of a person habituated to regular physical exercise” (11, p.486), he was concerned that individuals who consumed too much food, slept too long, and remained sedentary while pampering their belly would become corpulent, a condition that he associated with a variety of diseases (10). Therefore, he wrote, physical exercise should be included in the prescription for obesity (10, p. 137), ostensibly because activity contributed to the reduction of the kapha dosa (11, 46). Susruta regarded diabetes as a curable disease of the urinary tract (prameha) for which he prescribed diet and exercise. However, exercise was not prescribed for the noncurable form of diabetes known as mahu-meha (12). As noted above, Susruta was of the opinion that participation in excessive exercise, interpreted to mean strenuous or heavy physical activity, would cause multiple diseases and potentially lead to death (46). Consequently, he discouraged patients from active participation (Table 1).

Several centuries later, documents of the physician Caraka [Charaka (250–100 BCE)] made major contributions to the foundations of Ayurveda medicine (51, 52). Similar to Susruta, he believed that disruption of dosas caused diseases, whereas restoration of an equilibrium between them would enhance recovery and promote health (51). He advocated daily exercise because it alleviated dosas, especially kapha (51, p. 152), while endorsing the view of Susruta that training would have beneficial effects on the body. Although he prescribed moderate exercise for most diseases, strenuous exercise was advocated to “cure” diabetes (prameha; Table 1) (52, p. 312).

Contributions From the Yellow River Civilization

According to medical historians such as Gordon (23) and Lyons and Petrucelli (36), breathing exercises, regarded as medical gymnastics (16), were being practiced in China as early as 2600 BCE. During the era of the Yellow Emperor (1050–256 BCE), these exercises were used for subjects experiencing chills, fevers, or complete paralysis (60, p. 148). In addition, massage with exercise of the extremities was also being recommended. During this time period, the yin-yang doctrine was prevalent, with yang being identified with life and health, whereas disease and death were associated with yin (60).

In the East Han Dynasty (25 BCE–250 CE), a Chinese physician and surgeon named Hua T’O (Fig. 2) prescribed exercise for his patients and followers because of its yang effect. He stated that (65, p. 54):

The body needs exercise only it must not be to the point of exhaustion for exercise expels the bad air in the system promotes free circulation of the blood and prevent sickness.

Hua T’O advocated activities (labeled as frolic exercises) that simulated the actions of deers, tigers, bears, cranes, and monkeys that not only supported his previous statements but also strengthened legs, provided a sense of lightness, enhanced appetite, delayed aging, removed disease, and promoted health (65). Like his counterparts in other civilizations, he had the belief that excessive exercise would lead to disease states (Table 1).

Contributions to EIM From Greece and Nearby Regions and an Overview

According to Lyons and Petrucelli (36), the history of Greek medicine can be classified into the following periods with the approximate starting dates:

- Cretan-Mycenean 3000 BCE
- Mythological 1500 BCE
- Pre-Hippocratic (Philosopher-Scientist Era) 650 BCE
- Hippocratic 460 BCE
- Post-Hippocratic 370 BCE

Fig. 1. Susruta [600 Before Common Era (BCE)] of India. He was the first physician to prescribe moderate daily exercise to his patients. [Image from Tipton (58).]
<table>
<thead>
<tr>
<th>Civilization or Culture</th>
<th>Individuals of historical importance</th>
<th>Select ancient concepts that impacted the “Exercise Is Medicine” movement</th>
<th>Breathing exercises used to promote health</th>
<th>Exercise was advocated for its yang effect</th>
<th>Physicians consider a patient’s age, physical status, dietary habits, health status, etc. before prescribing exercise</th>
<th>Exercise should be performed daily and in moderation</th>
<th>Evidence for written exercise prescriptions</th>
<th>Believed strenuous exercise would result in disease and potential death</th>
<th>Prescribed exercise for obese subjects</th>
<th>Inactivity was associated with the onset of disease</th>
<th>Prescribed exercise for diseases besides obesity and diabetes</th>
<th>Era an example of the “exercise paradox”</th>
<th>Training was advocated or prescribed for its effects on growth and development, strength/endurance of muscles, improved digestion, cardiovascular system changes, elevated temperature, reduced fatigue, and enhanced physical appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indus Civilization</td>
<td></td>
</tr>
<tr>
<td>2000–1000 BCE</td>
<td></td>
</tr>
<tr>
<td>Greece and its City-States</td>
<td></td>
</tr>
<tr>
<td>1250–550 BCE</td>
<td></td>
</tr>
<tr>
<td>Roman Empire</td>
<td></td>
</tr>
<tr>
<td>260 BCE–210 CE</td>
<td></td>
</tr>
<tr>
<td>Civilization or Culture</td>
<td>Individuals of historical importance</td>
<td>Select ancient concepts that impacted the “Exercise Is Medicine” movement</td>
<td>Breathing exercises used to promote health</td>
<td>Exercise was advocated for its yang effect</td>
<td>Physicians consider a patient’s age, physical status, dietary habits, health status, etc. before prescribing exercise</td>
<td>Exercise should be performed daily and in moderation</td>
<td>Evidence for written exercise prescriptions</td>
<td>Believed strenuous exercise would result in disease and potential death</td>
<td>Prescribed exercise for obese subjects</td>
<td>Inactivity was associated with the onset of disease</td>
<td>Prescribed exercise for diseases besides obesity and diabetes</td>
<td>Era an example of the “exercise paradox”</td>
<td>Training was advocated or prescribed for its effects on growth and development, strength/endurance of muscles, improved digestion, cardiovascular system changes, elevated temperature, reduced fatigue, and enhanced physical appearance</td>
</tr>
<tr>
<td>Individuals of historical importance</td>
<td>No evidence</td>
<td>Susruta, Caraka</td>
<td>No evidence</td>
<td>Hua T’O</td>
<td>Pythagoras; no one from Sparta</td>
<td>Herodicus, Hippocrates, Dioles, and Erasistratus</td>
<td>Celsus, Archagthus, Asclepiades, and Galen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select ancient concepts that impacted the “Exercise Is Medicine” movement</td>
<td>Breathing exercises used to promote health</td>
<td>No evidence</td>
<td>No evidence</td>
<td>Yes</td>
<td>Yes</td>
<td>No evidence</td>
<td>No evidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise was advocated for its yang effect</td>
<td>Yes</td>
<td>Suggestive evidence</td>
<td>Yes</td>
<td>No evidence</td>
<td>No evidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physicians consider a patient’s age, physical status, dietary habits, health status, etc. before prescribing exercise</td>
<td>No evidence</td>
<td>Yes</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise should be performed daily and in moderation</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence for written exercise prescriptions</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Believed strenuous exercise would result in disease and potential death</td>
<td>No evidence</td>
<td>Yes, but Caraka felt that strenuous exercise would cure diabetes</td>
<td>No evidence</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescribed exercise for obese subjects</td>
<td>No evidence</td>
<td>Yes</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivity was associated with the onset of disease</td>
<td>No evidence</td>
<td>Yes</td>
<td>No evidence</td>
<td>No evidence</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescribed exercise for diseases besides obesity and diabetes</td>
<td>No evidence</td>
<td>Yes</td>
<td>No evidence</td>
<td>No evidence</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Era an example of the “exercise paradox”</td>
<td>No evidence</td>
<td>Yes</td>
<td>No evidence</td>
<td>Yes</td>
<td>Yes, unlikely in Sparta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training was advocated or prescribed for its effects on growth and development, strength/endurance of muscles, improved digestion, cardiovascular system changes, elevated temperature, reduced fatigue, and enhanced physical appearance</td>
<td>No evidence</td>
<td>Yes for most effects because they promoted health</td>
<td>No evidence</td>
<td>Yes for some effects because they promoted health while preventing effects associated with the aging process</td>
<td>Yes for most regions but uncertain in Sparta because the negative mental health effects were equal to the physical benefits on health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCE, Before Common Era (CE).
During the latter part of the Minoan civilization, a Homer. It is a difficult task to integrate this specific information with archeological and historical evidence indicating ancient Greece as the site of the Minoan civilization (3000–1000 BCE), the Mycenean civilization (1550–1050 BCE), a Classical Period (500–400 BCE) (57), and the establishment of numerous city-states (800–384 BCE) (44). However, to maintain a focus on the relationship between exercise and medicine, the subsequent topic headings will be followed.

Contributions from the Mycenean Era and insights from Homer. During the latter part of the Minoan civilization, a single individual performed the functions of a priest-physician (44); however, during the early years of the Mycenean Era, both “professions” attributed disease and illness to a punishment from one or more deities while seeking healing, recovery, and health from others (57). Specifically, Zeus was supreme and ruled Olympia, Athena was a daughter of Zeus who had select healing powers, Apollo was a son of Zeus who inflicted illness and death to men; Artemis was a daughter of Zeus who inflicted illness and death to women, and the demigod Asclepius became the physician god of healing. Asclepius’ first daughter was named Hygeia and later became the goddess of health, whereas his second daughter was known as Panacea and became responsible for healing (57). The practice of medicine during this time was labeled by Gordon as religious medicine (23), whereas Singer referred to it as Homer’s medicine (55).

According to Singer (55) and Eliott (17), physicians were held in “high esteem,” with the profession being organized into practitioners (healers) and surgeons. Of the two, the practitioners were the most respected (17). As mentioned in the Illiad by Homer, both were active in the Trojan war (fall of Troy: 1174 BCE), with Machaon and Podalirius (sons of Asclepius) serving as physicians (57). It should be noted that Machaon has been termed as the “father of surgery” (36), and the anatomic nomenclature used by Homer was similar to one mentioned by Hippocrates centuries later (23).

At the time of Homer (750 BCE), the practice of physical culture (exercise) was regarded by the citizens of Greece as a national duty, with gymnasia being established for this purpose (17). Indeed, gymnasia were available and in use long before members of the Aslepiades [guild of lay physicians (3)] practiced in temples (17). Homer revealed in his poems an admiration for the Greek athlete (17) and their propensity to schedule athletic completion as mentioned in the funeral games for Patroclus, in which warriors competed in chariot racing, boxing, wrestling, discus, spear throwing, and archery contests (57).

Finally, most historians agree that the end of the Mycenean civilization occurred soon after the fall of Troy in 1174 BCE (43).

Contributions from the city-state of Sparta. The zenith of Sparta’s influence was between 800 and 600 BCE, when an oligarchic form of government was in existence that suppressed sedition, required obedience to the state, and expected men to become warriors and women to be mothers of warriors, with all citizens being prepared for war at any time (40). Unlike other city-states, eugenics was practiced; birth was honored if healthy women produced warriors, as was death if a woman died in childbirth or a man died in combat. On the other hand, graves were left unmarked if either a woman or man died from other causes (43). If, for any reason, a male was judged to be unhealthy, unfit, or undesirable (handicapped, deformed, etc.) to become a future warrior, his life was terminated or he was left to die at the apotheate (pit) of Mount Taygetus (23, 40). It is unclear from the text of Pomeroy whether the same fate occurred with female babies who were judged to be unfit mothers of warriors (43). At the age of seven, a Spartan male was “educated” to become a physically fit warrior who devoted the majority of his time performing endurance and strenuous exercises or participating in combative athletics or games (29, 40, 57). Not surprisingly, Aristophanes claimed that the Spartan citizen was “addicted to exercise” (37).

Included early within the education of a Spartan man was never to show fear when exposed to the dark and to learn to tolerate pain and injury without expressing emotions; they were expected to lie and steal but not to get caught and, if caught and flogged, not to cry (44). Although a Spartan warrior would never kill an enemy in flight or one who admitted defeat (44), it is unlikely he expressed any sympathy, empathy, or compassion for a wounded enemy. Furthermore, there is no historical evidence that Spartan citizens expressed any of these emotions or “feelings” toward injured athletes or nonathletes.

Spartan females were educated to be mothers of warriors, which necessitated consuming a “healthy” diet and regular participation in physical fitness activities and athletic events (including wrestling) (57). However, compared with other women, she was, according to Pomeroy, the most liberated of all women in Greece (43). This social status occurred because...
1) other regions had a low regard for women and considered them as only chattels for men (44); 2) Spartan men were away from home for long periods because of military obligations, leaving women more responsibilities, which included managing, controlling, and owning property; 3) Spartan women had the opportunity to increase the wealth of the family by selling woven items; and 4) Sparta did not follow the Grecian practice of marriage at the age of 12 yr old, and thus a married Spartan woman was older and more mature when she assumed the responsibilities of the home. In addition, Pomeroy questions the validity of reports stating that nude females exercised with nude males solely for the purpose of being selected as a future mate (43).

Although Sparta demonstrated the value of a healthy and physically fit population for conditions of war, their culture exhibited little, if any, characteristics for the establishment of EIM. Hence, it is concluded that Sparta warranted no recognition for EIM becoming a national movement.

Contributions from the Philosopher-Scientist Era. One characteristic of the Minoan civilization was the formation of an extensive maritime fleet that established trade relationships with regions located within the Mediterranean and Aegean Seas (36). One result was the establishment of a port at Miletaus (situated on the Aegean west coast of Asia Minor) because it subsequently contained a school of philosophy that was founded by Thales (639 –544 BCE). His disciples included Animander (611–547 BCE), Anaximenes (610–545 BCE), and Pythagoras (570–490 BCE). The first two individuals made no significant contributions to EIM; however, this was not the case for Pythagoras (Fig. 3). A former athlete, Pythagoras was the first individual or medical philosopher from ancient Greece to advocate daily exercise for health reasons. Besides being an excellent mathematician and astronomer, he established a school in Croton, Itlay, to teach science and philosophy in accord with the mystical religious teachings of Orpheus (17, 23). His school was described as a “philosophical medical center” that served as a location for a religious cult in which he advised his followers to adhere to a regimen of diet, exercise, music, and mediation (61). He did not believe or teach that gods were responsible for disease; rather, disease and bodily ailments occurred because of a lack of harmony between the elements, qualities, and tendencies of the body. To restore harmony and to achieve a healthy state, a daily regimen was required, which included long walks, running, wrestling, discus throwing, and boxing (61).

Contributions from the Classical Period, the city-state of Athens, and the Post-Hippocratic Era. This time period includes the introduction and establishment of a democratic state, the subsequent defeat of the Persian army, the presence of the Golden Age of Greece, and Athens becoming the most important city-state of Greece (23, 36, 54, 55).

Herodicus (500 BCE), a former teacher of Hippocrates (54), was a physician who practiced dietetic medicine who later became recognized for his emphasis on the therapeutic effects of exercise (34). However, he became criticized by both Hippocrates and Plato for prescribing exercises they believed were too strenuous for his patients. Since he recently has been designated as the “father of sports medicine” (22), it is possible he devoted the majority of his time recommending exercise to aid recovery from athletic and gymnastic injuries.

Fig. 3. Pythagoras (570–490 BCE) of Samos. He was a philosopher who established a school at Crotana whose followers were advised to exercise daily for health purposes. [Image supplied by and used with permission of Musei Capitolini (45).]

Sallis, the pioneer of the EIM movement, and Berryman, the exercise science historian, are commended for informing EIM advocates that Hippocrates (460–370 BCE; Fig. 4) wrote that “eating alone will not keep a man well, he must also take exercise” (7, 49). Hippocrates also stated that “…food and exercise, while possessing opposite qualities, yet work together to produce health” (26, p. 229). Although Hippocrates was not the first physician to prescribe exercise for patients, he was the first recorded physician to provide a written exercise prescription for a patient suffering from consumption. Specifically, in Diseases III and internal affections, Hippocrates provided a detailed written exercise prescription of walking for a patient with consumption (28). Thus, it is surprising that EIM advocates do not use this historical fact for physicians when promoting the clinical attributes of exercise.

Aristotle (384–322 BCE), regarded by Singer as the primary originator of the Greek humoral theory (55), proposed when an imbalance occurred between the four humors [phlegm, yellow bile, black bile, and blood (42)], disease and bodily disorders would follow. Hippocrates was a “strong supporter” of the humoral theory and likely the most prominent physician in Greece to include its tenets when prescribing a regimen that would reestablish an equilibrium between the humors that aided recovery and promoted health. In Regimen II, Hippocrates prescribed moderate exercise because it warmed, thinned, and purged away the humor (27). Furthermore, he believed idleness (inactivity), excessive exercise, and over-
powering food consumption (compared with exercise) could lead to disease. His discussion in *Regimen I*, on how food can overpower exercise, has 2014 EIM overtones. Thus, it is surprising that the current crusade against obesity has not invoked Hippocratic views in its efforts. In addition to reducing corpulence or “excess flesh,” Hippocrates believed that training would increase stature, bone mass, muscle mass, tone, and endurance, digestion, temperature regulation, and tolerance against fatigue (57).

Hippocrates deserves recognition for providing the centrality of exercise in EIM for the following statement in *Acute Diseases* (25, p. 62):

I say then, that this question [regimen] is a most excellent one and allied to many others, some of the most vital importance in the art [medicine], for that it can contribute much to the recovery of the sick, and to the preservation of health in case of those gymnastic[athletic] exercises, and is useful to whatever one wish to apply it.

One of Hippocrates’ disciples was the physician Diocles [375–300 BCE (1)], who believed that diseases were caused by an imbalance of humors and by the constituents of air while adhering to Hippocratic views concerning health (56). Although he wrote extensively on diseases, there are no writings that indicated exercise was included as a prescription for their treatment. On the other hand, he was an ardent supporter of daily moderate exercise for younger and older individuals. Not surprisingly, he also felt Herodicus’ exercise prescriptions were too strenuous for his patients (57). Diocles believed that diet, exercise, and baths were essential for healthful living and advised children to visit the gymnasium twice daily for its exercise benefits, whereas older individuals were encouraged to take moderate walks to aid digestion while avoiding long and rapid walks because of the dangers of indigestion and stomach disorders (1, 59).

Similar to other medical historians, Rothshchuh labeled the physician Erasistratus in nearby Sicily (310–250 BCE) as the “father of physiology” for his physiological discoveries (47). Although Erasistratus’ views on the function of the body and causes of disease were markedly different from those of Susruta and Hippocrates, he prescribed a regimen that included moderate exercise, gymnastic activities, dieting, bathing, and limited medication (44).

Contributions From the Roman Empire and an Overview

Scarborough, writing on the history of Roman medicine, indicated ancient tribes in the hills of Rome around 950 BCE worshiped spirits that existed in animate and inanimate objects (50). Subsequently, they redirected their worship to gods and goddesses from Greece and used ceremonies to be free of disease, which they believed originated from the displeasure of the gods (50). They also designated health as being the domain and responsibility of Aesculapius (Asclepius) (17).

Although ancient Romans rapidly accepted the gods and goddesses of Greece, this was not the situation for medicine. According to Elliott (17), Pliny the Elder stated that while “The Roman people for more than 600 years were not without medicine, they were without physicians.” In most homes, the head of the household served as their physician, whereas in others it was slaves or foreigners. Elliott (17) mentioned that the first regular physician in Rome was Archagathus from Peloponnesia, who began his practice in 219 BCE. The second physician from Greece was the Aselepiades (128–56 BCE) of Bithynia. Like Archagathus, Aselepiades prescribed exercise (walking) for patients suffering from consumption, dropsy, and hemiplegia (50, 57).

The physician Celsus (258 BCE–50 CE), also known as the “Latin Hippocrates” (23), was a recorder of Roman medicine and the author of *De Medicina*. He mentioned that in the 400 yr since Hippocrates, medicine had become a triad of emphasis between dietetics, pharmacology, and surgery, with dietetics becoming a composite of food and fluid consumption, exercise, bathing, and relaxation (15). During the era of Celsus, exercise was considered to be reading aloud, drill, walking, and running, but never to the degree of sweating or to the level of fatigue experienced by athletes (15). Both Baas (3) and Celsus stated humoral shifts and climatic changes as the primary causes of disease.

The most important physician of the Roman Empire for global medicine and the EIM initiative was a former physician of gladiators named Claudius Galenus or Galen (129–210 CE; Fig. 5). He is recognized because his influence on the use of exercise in the practice of medicine in Arabic and European countries lasted —1,400 yr, or until the end of the Middle Ages (6, 62). His contributions to EIM have been mentioned in recent publications by Berryman (7, 8) and Sallis (49).

Galen was an admirer of Hippocrates and accepted the principle of humoral imbalance being the cause of disease. He also believed multiple factors contributed to disease and indicated there were nine different humoral mixtures or combinations that served as precursors for health disorders (53, p. 234). Factors that also could impact health and disease were 1) things consumed, 2) things being eliminated from the body, 3) things...
done as exercise, walking, riding, massage, sleep, etc., and 4) things happening from without (5, p. 14 and 15).

Emerging from deliberations on the relationships between health and disease, Galen developed his “medical theory,” which was formulated on the concept of “natural conditions” (53) or the “naturals” (4, 6, 7). As described by both Siegel (53) and Berryman (4, 6, 7), the theory included natural conditions (kata physin, healthy, and physiology1), and non-natural conditions (para physin, diseased, and pathological1). Identified with the non-naturals were 1) air, 2) motion and rest, 3) sleeping and waking, 4) that which was taken in, 5) that which was secreted, and 6) emotions and passions (4).

Germaine to EIM and implicit within the medical theory were that natural conditions were responsible for either the occurrence of disease or the preservation of health and were dependent upon the ability of the body to maintain a “normal balance” between the constituents, especially between the non-naturals (4). To Galen, work and exercise were equivalent terms, whereas motion had to be vigorous and cause labored breathing if it was to be designated as exercise. He classified exercise as being slow, swift, atony, vigorous, gentle, and violent; select examples are as follows: running was swift, lifting a heavy weight was vigorous, and continuous jumping was violent. However, if exercise was to be prescribed for health reasons, it was to be moderate (57). Of the exercises being mentioned, Galen’s favorite exercise comprised games in which a small ball was used. His views concerning the small ball were as follows (19, p. 302):

The form of exercise deserving our attention is therefore that which has the capacity to provide health of the body, harmony of the part, and virtue in the soul, and these things are true of the exercise with the small ball.

Galen believed that training would cause “thinning” of the body, harden and strengthen muscles, increase flesh (mass?), and elevate blood volume while achieving “good condition” of the wrestler or heroes like Hercules and Achilles in Homer’s epics (18, 19). Relevant to the EIM movement and consistent with the practice of select ancient physicians was Galen prescribing exercise for weakened patients or for those afflicted with disorders or diseases associated with arthritis, depression, dropsy, epilepsy, gout, tuberculosis, and vertigo (18, 19, 34, 38).

Concluding Remarks

The 21st century efforts of ACSM and the American Medical Association to maximize physical and mental health in American citizens by advocating more exercise in their daily lives have roots that began in antiquity. It is also likely true for the admirable goal of Dr. Robert Sallis (49) to have practicing physicians consider exercise as a vital sign when interacting with their patients. Although previous health educators defined health as “freedom from disease,” we know from medical historians that in ancient populations, this goal or hope was everpresent in their actions. Therefore, as medicine and therapy have progressed, we should not be surprised that ancient theories, doctrines, dogmas, or practices have emerged to explain the causes or consequences of disease. However, what is somewhat unexpected is that ancient physicians in agrarian societies prescribed moderate daily exercise to enhance health.2

Medical and exercise practitioners should realize >2.5 millennia ago, Susruta from the Indus Valley civilization was the first recorded physician to prescribe moderate daily exercise for this reason. They should also acknowledge Hippocrates being the first recorded physician to provide a written exercise prescription for a patient with a disease (consumption). Finally, because of the influence of Galen, exercise was advocated for health reasons and to minimize the consequences of disease until the beginning of the 16th century.

As shown in Table 1, the antiquity roots of EIM effectively demonstrate that ancient physicians and philosophers believed that regular exercise (training) would produce physiological changes that enhanced health. It is noteworthy that ancient physicians were against prescribing strenuous or excessive

1 Physiology and pathological were terms used by Berryman.

2 Defined as the “exercise paradox” in a 2010 American Physiological Society symposium by C. M. Tipton and J. W. Berryman.
References

