A writing-intensive course improves biology undergraduates’ perception and confidence of their abilities to read scientific literature and communicate science

Sara E. Brownell, Jordan V. Price, and Lawrence Steinman

1Department of Biology, Stanford University, Stanford, California; 2Immunology Program, Stanford University, Stanford, California; and 3Department of Neurology and Neurological Sciences, Stanford University, Stanford, California

Submitted 10 October 2012; accepted in final form 8 January 2013

Brownell SE, Price JV, Steinman L. A writing-intensive course improves biology undergraduates’ perception and confidence of their abilities to read scientific literature and communicate science. Adv Physiol Educ 37: 70–79, 2013; doi:10.1152/advan.00138.2012.— Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.

undergraduates; writing; communication; primary literature; curriculum; Likert-scale surveys; neuroimmunology

TWO OF THE MOST IMPORTANT SKILLS that we can teach as part of an undergraduate biology curriculum are effective communication and comprehension of primary scientific literature. Communication as a core competency for undergraduate biology students has been emphasized in reports such as Vision and Change in Undergraduate Biology Education: a Call to Action (1), Scientific Foundations for Future Physicians (2), and BIO2010: Transforming Undergraduate Education for Future Research Biologists (26). Important communication skills for biology undergraduates include verbal and written communication to a wide variety of audiences, including other scientists (21, 29, 30) as well as the lay public (4, 15, 23, 27). An equally important and related skill is the ability to critically read and comprehend primary scientific papers. Primary scientific literature is the gold standard by which scientists communicate their results to other scientists, so exposure to and practice dissecting primary literature are important corollaries to communication skills (16). Although some published literature suggests that primary research papers are too difficult for undergraduates (24, 28, 32), there is a significant body of literature that suggests that reading primary scientific papers can help undergraduates develop scientific process skills (9, 18, 20, 25) and improve self-confidence in scientific thinking (25).

While the overall importance of communication skills is generally accepted, undergraduate biology courses infrequently offer opportunities for students to improve on these skills (5). Even fewer biology courses focus on improving communication as an explicit goal of the course. To address this gap in the undergraduate curriculum, we developed a novel undergraduate neuroimmunology course that uses a writing-intensive format to improve students’ abilities to comprehend primary scientific literature and communicate scientific concepts to diverse audiences. This course is an upper-level basic science course, which is taken after the basic requirements of introductory biology have been completed. It covers the same amount of biology content as a typical upper-level course, but does so with an emphasis on improving science communication.

Specifically, our research questions were as follows: Does our writing-intensive neuroimmunology course have an impact on undergraduate students’:

1. perception of their ability to read primary scientific papers?
2. confidence in their ability to communicate to other scientists?
3. confidence in their ability to communicate to a layperson audience?

Here, we describe the structure and format of a writing-intensive course that was taught for three consecutive years through the Immunology Program at Stanford University. We also report the evaluation of this curriculum from the second and third year, including results from pre- and postcourse surveys and coded open-ended questions.

METHODS

Course Content and Structure

Course goals. The course objectives were threefold: 1) to improve the ability of students to understand primary scientific papers, 2) to improve the ability of students to communicate science to scientists, and 3) to improve the ability of students to communicate science to laypeople. An additional goal of the course was to convey basic scientific principles of neuroimmunology, but assessing scientific content was not the focus of this evaluation; we chose to evaluate only process skills, not content.
Notably, the course was not designed for students interested in pursuing careers in journalism but rather as a basic science course for students interested in careers directly related to science (e.g., medicine, research, academia). Demographic data indicated that, indeed, the majority of undergraduates enrolled in the course were biology majors interested in pursuing careers in medicine or research (Table 1). The majority of students enrolled in the course based on their interest in neuroimmunology, as opposed to an interest in writing or communication (Table 1). This was our desired target population of students: those not predisposed to an interest in science communication and more representative of practicing scientists and physicians. In addition to our desire to explicitly teach science communication skills, we believed that a writing-intensive format would be a more effective way to assess content mastery rather than traditional exams based on the writing-to-learn literature (3, 11, 13, 30, 31). Thus, writing exercises served dual purposes: to test the students’ understanding of the material and to encourage students to read primary scientific papers deeply and convey the material in a thoughtful way (21, 30).

Course content. The course was an upper-level undergraduate neuroimmunology course with a prerequisite of introductory biology. This course focused on the molecular and cellular interactions between the immune system and the brain and is composed of two lectures and one discussion section every week. Although a fairly nascent field, an upsurge of neuroimmunology research over the past 20 yr has laid a solid foundation on which to base a curriculum. Many of the experts in the field are resident faculty members at Stanford University or the nearby University of California-San Francisco,1 so we adopted a guest lecture format in which faculty members directly presented his or her research to our students. Expert professors gave the majority of the lectures, and the two graduate student teaching assistants (TAs) gave one lecture each. These lectures covered specific topics in neuroimmunology ranging from diseases such as multiple sclerosis or Alzheimer’s disease to the role of immune molecules in the healthy developing brain. Although this lecture schedule lacked the continuity of a course taught by a single lecturing professor, we believe the benefit gained from the exposure to leaders in the research field, as well as students’ opportunities to communicate directly with these scientists, substantially outweighed any gaps in continuity. There was time for questions and discussion at the end of every lecture; we encouraged students to ask detailed questions and relate the specific lecture to common themes of the course. Students also attended a weekly discussion section where they discussed the topics from lecture in more detail. To further strengthen continuity, graduate student TAs attended each lecture to stress overarching themes and to assist students interested in careers directly related to science (e.g., medicine, research, academia). Demographic data indicated that, indeed, the majority of undergraduates enrolled in the course were biology majors interested in pursuing careers in medicine or research (Table 1). The majority of students enrolled in the course based on their interest in neuroimmunology, as opposed to an interest in writing or communication (Table 1). This was our desired target population of students: those not predisposed to an interest in science communication and more representative of practicing scientists and physicians. In addition to our desire to explicitly teach science communication skills, we believed that a writing-intensive format would be a more effective way to assess content mastery rather than traditional exams based on the writing-to-learn literature (3, 11, 13, 30, 31). Thus, writing exercises served dual purposes: to test the students’ understanding of the material and to encourage students to read primary scientific papers deeply and convey the material in a thoughtful way (21, 30).

Course content. The course was an upper-level undergraduate neuroimmunology course with a prerequisite of introductory biology. This course focused on the molecular and cellular interactions between the immune system and the brain and is composed of two lectures and one discussion section every week. Although a fairly nascent field, an upsurge of neuroimmunology research over the past 20 yr has laid a solid foundation on which to base a curriculum. Many of the experts in the field are resident faculty members at Stanford University or the nearby University of California-San Francisco,1 so we adopted a guest lecture format in which faculty members directly presented his or her research to our students. Expert professors gave the majority of the lectures, and the two graduate student teaching assistants (TAs) gave one lecture each. These lectures covered specific topics in neuroimmunology ranging from diseases such as multiple sclerosis or Alzheimer’s disease to the role of immune molecules in the healthy developing brain. Although this lecture schedule lacked the continuity of a course taught by a single lecturing professor, we believe the benefit gained from the exposure to leaders in the research field, as well as students’ opportunities to communicate directly with these scientists, substantially outweighed any gaps in continuity. There was time for questions and discussion at the end of every lecture; we encouraged students to ask detailed questions and relate the specific lecture to common themes of the course. Students also attended a weekly discussion section where they discussed the topics from lecture in more detail. To further strengthen continuity, graduate student TAs attended each lecture to stress overarching themes and to assist students interested in careers directly related to science (e.g., medicine, research, academia). Demographic data indicated that, indeed, the majority of undergraduates enrolled in the course were biology majors interested in pursuing careers in medicine or research (Table 1). The majority of students enrolled in the course based on their interest in neuroimmunology, as opposed to an interest in writing or communication (Table 1). This was our desired target population of students: those not predisposed to an interest in science communication and more representative of practicing scientists and physicians. In addition to our desire to explicitly teach science communication skills, we believed that a writing-intensive format would be a more effective way to assess content mastery rather than traditional exams based on the writing-to-learn literature (3, 11, 13, 30, 31). Thus, writing exercises served dual purposes: to test the students’ understanding of the material and to encourage students to read primary scientific papers deeply and convey the material in a thoughtful way (21, 30).

Course content. The course was an upper-level undergraduate neuroimmunology course with a prerequisite of introductory biology. This course focused on the molecular and cellular interactions between the immune system and the brain and is composed of two lectures and one discussion section every week. Although a fairly nascent field, an upsurge of neuroimmunology research over the past 20 yr has laid a solid foundation on which to base a curriculum. Many of the experts in the field are resident faculty members at Stanford University or the nearby University of California-San Francisco,1 so we adopted a guest lecture format in which faculty members directly presented his or her research to our students. Expert professors gave the majority of the lectures, and the two graduate student teaching assistants (TAs) gave one lecture each. These lectures covered specific topics in neuroimmunology ranging from diseases such as multiple sclerosis or Alzheimer’s disease to the role of immune molecules in the healthy developing brain. Although this lecture schedule lacked the continuity of a course taught by a single lecturing professor, we believe the benefit gained from the exposure to leaders in the research field, as well as students’ opportunities to communicate directly with these scientists, substantially outweighed any gaps in continuity. There was time for questions and discussion at the end of every lecture; we encouraged students to ask detailed questions and relate the specific lecture to common themes of the course. Students also attended a weekly discussion section where they discussed the topics from lecture in more detail. To further strengthen continuity, graduate student TAs attended each lecture to stress overarching themes and to assist students interested in careers directly related to science (e.g., medicine, research, academia). Demographic data indicated that, indeed, the majority of undergraduates enrolled in the course were biology majors interested in pursuing careers in medicine or research (Table 1). The majority of students enrolled in the course based on their interest in neuroimmunology, as opposed to an interest in writing or communication (Table 1). This was our desired target population of students: those not predisposed to an interest in science communication and more representative of practicing scientists and physicians. In addition to our desire to explicitly teach science communication skills, we believed that a writing-intensive format would be a more effective way to assess content mastery rather than traditional exams based on the writing-to-learn literature (3, 11, 13, 30, 31). Thus, writing exercises served dual purposes: to test the students’ understanding of the material and to encourage students to read primary scientific papers deeply and convey the material in a thoughtful way (21, 30).

Course content. The course was an upper-level undergraduate neuroimmunology course with a prerequisite of introductory biology. This course focused on the molecular and cellular interactions between the immune system and the brain and is composed of two lectures and one discussion section every week. Although a fairly nascent field, an upsurge of neuroimmunology research over the past 20 yr has laid a solid foundation on which to base a curriculum. Many of the experts in the field are resident faculty members at Stanford University or the nearby University of California-San Francisco,1 so we adopted a guest lecture format in which faculty members directly presented his or her research to our students. Expert professors gave the majority of the lectures, and the two graduate student teaching assistants (TAs) gave one lecture each. These lectures covered specific topics in neuroimmunology ranging from diseases such as multiple sclerosis or Alzheimer’s disease to the role of immune molecules in the healthy developing brain. Although this lecture schedule lacked the continuity of a course taught by a single lecturing professor, we believe the benefit gained from the exposure to leaders in the research field, as well as students’ opportunities to communicate directly with these scientists, substantially outweighed any gaps in continuity. There was time for questions and discussion at the end of every lecture; we encouraged students to ask detailed questions and relate the specific lecture to common themes of the course. Students also attended a weekly discussion section where they discussed the topics from lecture in more detail. To further strengthen continuity, graduate student TAs attended each lecture to stress overarching themes and to assist students interested in careers directly related to science (e.g., medicine, research, academia). Demographic data indicated that, indeed, the majority of undergraduates enrolled in the course were biology majors interested in pursuing careers in medicine or research (Table 1). The majority of students enrolled in the course based on their interest in neuroimmunology, as opposed to an interest in writing or communication (Table 1). This was our desired target population of students: those not predisposed to an interest in science communication and more representative of practicing scientists and physicians. In addition to our desire to explicitly teach science communication skills, we believed that a writing-intensive format would be a more effective way to assess content mastery rather than traditional exams based on the writing-to-learn literature (3, 11, 13, 30, 31). Thus, writing exercises served dual purposes: to test the students’ understanding of the material and to encourage students to read primary scientific papers deeply and convey the material in a thoughtful way (21, 30).

Course content. The course was an upper-level undergraduate neuroimmunology course with a prerequisite of introductory biology. This course focused on the molecular and cellular interactions between the immune system and the brain and is composed of two lectures and one discussion section every week. Although a fairly nascent field, an upsurge of neuroimmunology research over the past 20 yr has laid a solid foundation on which to base a curriculum. Many of the experts in the field are resident faculty members at Stanford University or the nearby University of California-San Francisco,1 so we adopted a guest lecture format in which faculty members directly presented his or her research to our students. Expert professors gave the majority of the lectures, and the two graduate student teaching assistants (TAs) gave one lecture each. These lectures covered specific topics in neuroimmunology ranging from diseases such as multiple sclerosis or Alzheimer’s disease to the role of immune molecules in the healthy developing brain. Although this lecture schedule lacked the continuity of a course taught by a single lecturing professor, we believe the benefit gained from the exposure to leaders in the research field, as well as students’ opportunities to communicate directly with these scientists, substantially outweighed any gaps in continuity. There was time for questions and discussion at the end of every lecture; we encouraged students to ask detailed questions and relate the specific lecture to common themes of the course. Students also attended a weekly discussion section where they discussed the topics from lecture in more detail. To further strengthen continuity, graduate student TAs attended each lecture to stress overarching themes and to reinforce specific connections between lectures during discussion sections.

1 Lecturers (resident faculty members at Stanford University unless otherwise noted) over the 3 yr included Prof. Ben Barres, Prof. Ajay Chawla (University of California-San Francisco (UCSF)), Prof. Richard Daneman (UCSF), Prof. Firdaus Dhabhar, Prof. May Han, Prof. David Julius (UCSF), Prof. Emmanuel Mignot, Prof. Theo Palmer, Prof. Robert Sapolsky, Prof. David Schneider, Prof. Carla Shatz, Prof. Lawrence Steinman, and Prof. Tony Wyss-Coray.

2 Science writing panelists over the 3 yr included Monya Baker, Glennda Chui, Paul Costello, Natalie DeWitt, Bruce Goldman, Professor Donald Kennedy, Jonathan Rabinovitz, and Evelyn Strauss.
for these summaries, we chose primary research papers written by
guest lecturers published within the last 5 yr that we deemed reason-
ably accessible to undergraduates. The purpose of this exercise was
not to have students produce a polished piece of science journalism
but rather to use this style of writing as a means to assess their
understanding of the paper and their ability to communicate science to
a layperson audience. We provided specific guidelines for these
assignments (Table 2), which standardized student summaries and
enabled us to use them as a proxy for student ability to communicate
science rather than to assess their basic writing ability or their ability
to editorialize about a scientific issue.

The ~15 students that enrolled in the course each year wrote a total
of five NYT-style articles based on primary scientific papers over the
duration of the course. Students submitted all assignments by e-mail.
We gave students specific written feedback on each article by grad-
uate student TAs, both via edits within the document and one to two
paragraphs of general suggestions at the end of each paper. We gave
each summary a grade of either a check minus, check, or check plus
and allowed students who received either a check or a check minus to
rewrite the assignment, implementing our suggestions for a regrade.
We observed that the majority of students (~95%) who received
lower scores revised and resubmitted their assignments.

Students also attended a 60-min discussion section once a week led
by a graduate student TA. Only five to eight students were in each
section; the small size encouraged student participation. TAs led a
discussion about the primary scientific paper during section. We
required students to submit the NYT-style summary electronically
before the beginning of the section. This ensured that they had read
and thought about the paper before coming to the section and led to a
productive discussion about the specifics of the paper. During the
discussion, students interpreted each figure, identified the main points,
and discussed the broader significance of the paper as it related to the
field of neuroimmunology.

As a final assignment for the course, students wrote both a scientific
review-style article and a NYT-style article on any topic of their choosing in neuroimmunology (Fig. 2). The review article was a
three-page summary of primary scientific research in a given area and
was directed to other scientists as an exercise of formal scientific
writing. Throughout the course, students read review articles pertain-
ing to broader topics in neuroimmunology as examples of this style of
writing. Students received written feedback from graduate student
TAs on both an outline and first draft of their review article, which
allowed them to make iterative changes to it.

In tandem with the review article, students wrote a NYT-style
summary of one of the more recent primary scientific articles de-
scribed in their scientific reviews. TAs only provided guidance about
which primary article to select; students did not receive any feedback
on their writing from TAs on this assignment. Additionally, we
required students to give their draft summaries to two laypeople who
had not taken introductory college biology for a “layperson critique,”
a more authentic measure of how effective the student was in com-
municating the science to the target audience. Laypeople were se-
lected by the students and were often family or close friends. They
gave oral feedback to the student on the summary, which the student
then synthesized in a one-page written report that he or she turned in.
Thus, the final version of their NYT-style summary was a synthesis of
both peer critique and layperson feedback. Students submitted the
final versions of the review article and the NYT-style summary for
grading by the TAs.

Course Evaluation

This course was offered to 12 undergraduates in 2009, 15 under-
graduates in 2010, and 14 undergraduates in 2011. The writing-

Table 2. Guidelines for the NYT-style summaries

<table>
<thead>
<tr>
<th>Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Begin with a brief, on-topic, engaging introduction</td>
</tr>
<tr>
<td>2. Focus on the main findings and limit extraneous information</td>
</tr>
<tr>
<td>3. Limit the amount of jargon (technical scientific language) and explain each term introduced</td>
</tr>
<tr>
<td>4. Highlight the significance and importance of findings</td>
</tr>
<tr>
<td>5. Write in an organized and logical manner, including the use of appropriate transitions</td>
</tr>
</tbody>
</table>

Fig. 2. Final assignments: review article and New York Times (NY Times)-style summary on a topic in neuroim-
munology of the student’s choosing.
intensive format with extensive feedback and iterative assignments limited the size of the class.

To evaluate the effectiveness of the course, we used an approach combining open-ended postcourse questions, pre- and postcourse surveys, and analysis of student writing. In 2009, we used traditional teaching evaluations (data not reported). We assessed the course through pre- and postcourse surveys and open-ended questions for 2010 and 2011.

Open-ended questions. In 2010, we gave students a postcourse assessment with the following questions related to our objectives for the course:

1. Do you think your ability to understand primary scientific papers has improved as a result of this course? Please explain why or why not.
2. Do you think your ability to communicate science verbally to other scientists has improved as a result of this course? Please explain why or why not.
3. Do you think your ability to communicate science verbally to scientists through writing has improved as a result of this course? Please explain why or why not.
4. Do you think your ability to communicate science to other scientists through writing has improved as a result of this course? Please explain why or why not.
5. Is it important for research scientists to be able to communicate their conclusions to a layperson audience? Please explain why or why not.
6. What is the most important thing you learned in this class? We recorded student responses to these questions, and two independent raters coded the responses using grounded theory (10). We established interrater reliability to be over 80%. For coding disagreements, discussion between the two raters determined a consensus code.

Pre- and postcourse surveys. The precourse survey consisted of three Likert-style blocks of questions that focused on student confidence in communication skills, student perceptions of reading comprehension of primary scientific literature, and student attitudes toward communication of science to the public (22). Students answered questions on a five-point scale from "strongly disagree" to "strongly agree." The precourse survey also gathered demographic information.

The postcourse survey included the same three Likert-style blocks of questions as well as a block of questions asking about the impact of different writing assignments on improvement of student writing and a block of questions pertaining to the overall impact of the course.

We developed pre- and postcourse surveys by performing think-alouds with three undergraduate students (6) and piloted the surveys with students in this course in 2010. After making revisions to the surveys, we piloted the final surveys with another four students using think-alouds before we administered the final versions to students in 2010. Data presented in this report on the pre- and postcourse surveys are from 2011; the preliminary data from 2010 using an earlier version of the survey were in agreement with the results presented here (data not shown). Students took the precourse survey on the first day of class and the postcourse survey on the final day of class. We matched and compared pre- and postcourse surveys by question to show the changes over the course of the quarter using paired-sample (pre/post) t-tests.

RESULTS

Here, we present seven major findings that support our claim that a writing-intensive format improves students’ perceptions of their ability to understand primary scientific papers, communicate science to scientists, and communicate science to laypeople. Much of these data are interrelated, illustrating how the key elements of frequent evaluation, revision, and practice work together to improve student processing skills.

Finding 1: Students Showed Gains in the Perception of Their Understanding of Primary Scientific Papers

One hundred percent of the students (15/15) in 2010 thought their ability to read primary scientific papers improved as a result of this course (Table 3). We coded students’ open-ended responses explaining the reasons why they improved using grounded theory (Fig. 3).

Many of the students cited the need to identify the main points of the primary scientific paper to effectively write the NYT-style summary. One student stated, “I am probably 100X better at understanding primary papers because the assignments forced me to understand the papers.” Another student echoed this theme by saying, “Taking the time to explain each primary scientific paper in my own words has helped me look for the main points and critical information while I read.” Finally, a student said, “I am more able to look and find important details in a paper and know what is important and what is not important. I understand how to go through figures and get the big picture from them.”

Additionally, students highlighted the change in their confidence in understanding figures of primary scientific papers. Responses included: “I have gained a better appreciation for focusing on the figures rather than the dense explanatory text,” “I also pay more attention to figures because I know how to read them better,” and “My knowledge in science has increased greatly through the demystifying of complex papers in section. Now I know– go straight to the figures!”

We gave students in 2011 a series of Likert-scale questions focused on reading primary literature. We saw statistically significant gains in response to questions regarding confidence in understanding figures, why a particular experiment was conducted, and the main findings of a paper (P < 0.05; Table 4). The

Table 3. Closed-ended questions about students’ ability to understand primary scientific papers and communicate science

<table>
<thead>
<tr>
<th>Question</th>
<th>Agree</th>
<th>Disagree</th>
<th>Maybe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you think your ability to understand primary scientific papers has improved as a result of this course?</td>
<td>15/15</td>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>2. Do you think your ability to communicate science to laypeople through writing has improved as a result of this course?</td>
<td>14/15</td>
<td>0/15</td>
<td>1/15</td>
</tr>
<tr>
<td>3. Do you think your ability to communicate science verbally to other scientists has improved as a result of this course?</td>
<td>14/15</td>
<td>0/15</td>
<td>7/15</td>
</tr>
<tr>
<td>4. Do you think your ability to communicate science to other scientists through writing has improved as a result of this course?</td>
<td>13/15</td>
<td>2/15</td>
<td>13/15</td>
</tr>
</tbody>
</table>

n = 15 students total. Postcourse survey responses to the following questions were analyzed on an “agree,” “disagree,” or “maybe” scale for students in 2010.
gains seen on the postcourse surveys compared with the pre-
course surveys corroborated with the open-ended results from
the students in 2010 (Table 3).

**Finding 2: Students Perceived Improvements in Their Ability
to Write NYT-Style Articles**

Ninety-three percent of the students (14/15) in 2010 thought
their ability to communicate science to laypeople through
writing improved as a result of this course, and one student
(1/15) was “not sure” if his ability improved (Table 3). We
coded the open-ended responses regarding student explana-
tions for their answers to these questions (Fig. 4).

The most frequent reasons for improvement in written com-
munication included practice and feedback (Fig. 4). Students
wrote a total of five NYT-style articles and peer critiqued at
least two articles. TAs gave detailed feedback on every weekly
assignment, after which students had the opportunity to revise
and resubmit their articles. This iterative process appears to
have strongly influenced students’ perception of improvement
in their writing, as illustrated by one student’s response:
“Practice, feedback, and examples helped me. The entire pro-
cess of writing the [NYT-style summary] and having people
read them was great.”

Additionally, students indicated that understanding the
main points of primary scientific papers was important for
their ability to write about them. As one student said,
“Understanding a paper is instrumental in simplifying it to
the level of a layperson. Reading papers and then discussing
the main points has improved my ability to synthesize understandable explanations of complex ideas.” Another
student mentioned, “I’ve gotten every NYT article proof-
read by my friends all quarter and I definitely feel like they
were less confused at the end. I learned how to focus on the
main points [of the primary scientific paper] and not try to
discuss everything.” What perhaps best illustrates the im-
portance the students placed on understanding the main
points of the paper was one student’s response: “I think once
I understand the concept thoroughly myself, describing it in
simpler details becomes easier. Really I have realized that
this particular form of writing is a testament to how well I
understand the concept myself.”

Students in 2011 had high scores on the postcourse survey
for questions related to their perception of their improvement
in writing skills. All responses fell between “agree” and
“strongly agree” on the Likert scale (Table 5), which also
supported the data from 2010 (Table 3).

![Fig. 3. Coded open-ended responses from students in 2010 regarding their explanations for their perceived improved ability to read primary scientific literature. Responses that were only reported once and could not be classified in the other categories were counted as “Other.”](image)

Table 4. **Reading primary-source scientific papers**

<table>
<thead>
<tr>
<th></th>
<th>Precourse</th>
<th>Postcourse</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I have difficulty understanding why a particular experiment was performed in a primary scientific paper. (Reversal)</td>
<td>2.43 (0.228)</td>
<td>1.64 (0.133)</td>
<td>0.786*</td>
</tr>
<tr>
<td>2. After I read a primary scientific paper, I can think of future experiments that should be done.</td>
<td>3.43 (0.202)</td>
<td>3.79 (0.155)</td>
<td>0.357†</td>
</tr>
<tr>
<td>3. I do not feel confident in my ability to understand the main findings/conclusions of a primary scientific paper in my field. (Reversal)</td>
<td>2.21 (0.261)</td>
<td>1.36 (0.133)</td>
<td>0.857*</td>
</tr>
<tr>
<td>4. I feel confident in my ability to understand figures in a primary scientific paper in my field.</td>
<td>3.76 (0.261)</td>
<td>4.50 (0.139)</td>
<td>0.714*</td>
</tr>
</tbody>
</table>

Data are precourse and postcourse survey results as means (SE) as well as mean gain scores for responses to the question “What is your level of agreement with the following statements?” for students in 2011; n = 14 students total. Reversal questions are those that are stated in the negative, so the sign of the gain is changed. Results were scored with the following scale: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. *Precourse vs. postcourse significance, based on a paired-samples t-test (**P** < 0.05); †precourse vs. postcourse significance, based on a paired-samples t-test (**P** = 0.055).
Finding 3: Students Thought That They Improved Their Ability to Communicate Science to Scientists

Ninety-three percent of the students (14/15) in 2010 thought their ability to communicate science verbally to other scientists improved as a result of this course (Table 3). One student did not think that her ability improved. We coded the students’ open-ended responses regarding their explanations for perceived improvement (Fig. 5).

In addition to perceived improvements in identifying the main points and having an overall deeper understanding of neuroimmunology, some students thought that the process of writing NYT-style articles helped them with their verbal communication. One student said, “Practicing writing doubles as practicing thinking, organizing, and articulating concepts. These are essential to verbal communication as well.”

Additionally, students thought that the discussion of the scientific paper in the section helped them become more comfortable communicating. One student mentioned, “I have had a lot of practice communicating with scientists and peers in the class, especially in section,” and another student echoed this sentiment, saying “I have gained valuable experience in discussing cutting-edge research with peers in a small group setting.”

Table 5. Improvement of writing skills

<table>
<thead>
<tr>
<th>Postcourse</th>
<th>Number of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I think that the TA feedback on weekly NYT-style articles improved my writing.</td>
<td>4.57 (0.173)</td>
</tr>
<tr>
<td>2. I think that being able to rewrite my weekly NYT-style articles and submit them for a regrade improved my writing.</td>
<td>4.36 (0.225)</td>
</tr>
<tr>
<td>3. I think that peer reviewing another student’s final NYT-style article improved my own writing.</td>
<td>4.36 (0.169)</td>
</tr>
<tr>
<td>4. I think that having my final NYT-style article peer reviewed by another student improved my writing.</td>
<td>4.57 (0.137)</td>
</tr>
<tr>
<td>5. I think that having laypeople critique my final NYT-style article improved my writing.</td>
<td>4.64 (0.133)</td>
</tr>
</tbody>
</table>

Data are postcourse survey results as means (SE) for responses to the question “What is your level of agreement with the following statements?” for students in 2011; n = 14 students total. Results were scored with the following scale: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. TA, teaching assistant.
Finding 4: Student Confidence in Communicating Science Improved

Notably, student confidence in communicating science also improved as a result of the course. We observed significant gains on the postcourse survey compared with the precourse survey from students in 2011 for every question ($P < 0.05$; Table 6). Student scores on the precourse survey fell between “neutral” and “agree,” whereas they fell between “agree” and “strongly agree” on the postcourse survey. These gains were observed in every category, regardless of whether the question asked about student confidence talking with laypeople, peer science majors, graduate student TAs, or professors in science.

Finding 5: Student Attitudes Toward Science Communication to Laypeople Showed a Ceiling Effect

On both the pre- and postcourse survey, 100% of the students (15/15) in 2010 thought that it was important for research scientists to be able to communicate their conclusions to a layperson audience, illustrating a ceiling effect.

To better assess student attitudes toward science communication, we designed a broader series of Likert-scale questions regarding attitudes toward science communication to laypeople. Surprisingly, student responses in 2011 using a Likert scale also displayed a ceiling effect in their attitudes toward science communication to laypeople. There were no differences between pre- and postcourse survey to the question “I think it is important for research scientists to be able to communicate their conclusions to a layperson audience” (Table 7), as students had a mean of 4.79 on a 5.0 scale for both the pre- and postcourse survey.

Table 6. Communicating science

<table>
<thead>
<tr>
<th>Statement</th>
<th>Precourse</th>
<th>Postcourse</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I feel confident in my ability to verbally communicate to laypeople the scientific information I learn in class.</td>
<td>3.857 (0.206)</td>
<td>4.571 (0.137)</td>
<td>0.714*</td>
</tr>
<tr>
<td>2. I feel confident in my ability to write a NY Times-style article directed toward a layperson audience on scientific information I learn in class.</td>
<td>3.143 (0.294)</td>
<td>4.5 (0.139)</td>
<td>1.357*</td>
</tr>
<tr>
<td>3. I feel confident talking to peers who are science majors about scientific information that I learn in class.</td>
<td>4.071 (0.266)</td>
<td>4.714 (0.125)</td>
<td>0.643*</td>
</tr>
<tr>
<td>4. I feel confident in my ability to write a review style article directed to a scientific audience on scientific information I learn in class.</td>
<td>3.286 (0.286)</td>
<td>4.214 (0.214)</td>
<td>0.929*</td>
</tr>
<tr>
<td>5. I feel confident explaining scientific information that I learn in class to graduate student TAs.</td>
<td>3.643 (0.248)</td>
<td>4.429 (0.137)</td>
<td>0.786*</td>
</tr>
<tr>
<td>6. I feel confident explaining scientific information that I learn in class to science professors.</td>
<td>3.286 (0.194)</td>
<td>4.071 (0.195)</td>
<td>0.786*</td>
</tr>
</tbody>
</table>

Data are precourse and postcourse survey results as means (SE) as well as mean gain scores for responses to the question “What is your level of agreement with the following statements?” for students in 2011; $n = 14$ students total. Results were scored with the following scale: $1 =$ strongly disagree, $2 =$ disagree, $3 =$ neutral, $4 =$ agree, and $5 =$ strongly agree. *Precourse vs. postcourse significance, based on a paired-samples t-test ($P < 0.05$).

Finding 6: Students Explicitly Indicated That This Course Impacted Their Overall Ability to Communicate

One question that showed statistically significant differences between the precourse survey and the postcourse survey was “I think that most laypeople are not equipped with the skills or knowledge to be able to understand scientific concepts.” This reversal question showed a much lower score on the postcourse survey, indicating that after taking the course, students positively changed their perception of layperson abilities to understand science.

Finding 7: Students Perceived That the Course Was Successful at Teaching Both Science Content and Science Communication

We intended this course to be an upper-level basic science course. While the assignments focused on communication skills, the content was neuroimmunology. We asked students in 2011 an open-ended question on the most important thing they
learned in the course. Responses were coded, and the majority of responses fell into two categories: neuroimmunology content and science communication skills. Six responses indicated that science communication skills were the most important, whereas four responses highlighted that neuroimmunology content was most important. Four additional responses included both neuroimmunology and science communication skills as being equally important. The fact that many students felt that basic scientific content was the most important aspect of the course provides support for the assertion that teaching process skills does not negatively affect a course’s standing as a basic science course.

DISCUSSION

Here, we describe a course that uses a unique format to teach basic science and communication skills to undergraduate biology students. The evaluation data indicated that the course met its goals that focused on process skills. The course had a positive impact on student perceptions of and confidence in their abilities to read primary scientific papers and communicate science to both laypeople and other scientists.

Students were given numerous opportunities to hone their writing skills in a low-stakes way through iterative drafts and the opportunity to revise and resubmit their work, the effectiveness of which has been previously reported (7, 8). Not only did this give students the chance to refine their writing skills, but we believe it also encouraged them to think more deeply about the course material. For example, if students misinterpreted a figure in the primary scientific paper on which they were writing a NYT-style summary, they were able to clarify this during the discussion and correct it in their summary. Additionally, a higher frequency of writing, in this case on a weekly basis, has been shown to improve both writing skills and thinking, serving dual pedagogical purposes (14).

An important feature of the course was the interdependence of the assignments. The combination of reading a primary scientific paper, writing a NYT-style summary of the paper, discussing the paper in the section, and revising the NYT-style summary led to gains in student perceptions of reading comprehension and communication that likely could not be independently ascribed to any one type of assignment. As the students themselves noted, the assignments as a whole met the course goals in a complementary manner, which supports previous literature linking reading, writing, and thinking (11).

Our target students were those interested in careers in science research and medicine rather than journalism or science policy. We aimed to train future physicians and scientists in the skills of science communication so that they are better able to communicate with scientists and nonscientists alike. According to demographic data, we served our desired population of students, those who were overwhelmingly biology-focused majors and interested in obtaining either a MD or PhD degree in basic science. By housing this course in a science program of study (immunology), we attracted a cohort of students interested in taking this course primarily due to its subject matter in neuroimmunology and not those students predisposed to an interest in science communication or writing. Interestingly, given a population of students not intrinsically interested in science communication, we had a ceiling effect for their positive attitudes toward science communication. On the precourse survey, all of the students in 2010 thought that research scientists need to be able to communicate their results to nonscientists. Additionally, students in 2011 answered close to “strongly agree” on the precourse survey Likert-scale questions. We asked graduate students in biology-focused PhD programs the same question and saw a very similar trend (data not shown). It would be interesting to see if practicing scientists and doctors also think that communication is important but feel ill equipped to be effective communicators to a lay public. This would have important implications for policy work, which has been perhaps too focused on trying to convince scientists that science communication is important. If researchers and clinicians already know that good communication skills are important, then we might want to shift the emphasis to providing avenues to practice these skills, starting in undergraduate and graduate programs.

The one question related to attitudes toward science communication to laypeople that significantly changed was “I think that most laypeople are not equipped with the skills or knowledge to be able to understand scientific concepts.” This reversal question shifted to a lower score on the postcourse survey, which suggests that students changed their perception about who is responsible for the lack of effective communication between scientists and laypeople. This result indicates that giving our students the opportunity to develop skills in science communication shifted their perception about the basic ability of laypeople to understand complex scientific concepts, an important result that we speculate could have wide-ranging implications for the acknowledged communication gap between science professionals and the lay public.

A small number of graduate students also enrolled in this course each year and completed all the assignments (their data is not included in this analysis). Although we do not have large enough sample sizes to do a more detailed study of their experiences, preliminary data showed that they also benefited from the course. This suggests that this course format might be effective for both undergraduates and graduate students, since both populations are not currently taught communication skills in their typical curricula.

Table 8. Impact of the course

<table>
<thead>
<tr>
<th>Question</th>
<th>Postcourse Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I think that this course improved my ability to write a NYT-style article.</td>
<td>4.93 (0.071)</td>
</tr>
<tr>
<td>2. I think that this course improved my ability to write a review style article directed to other scientists.</td>
<td>4.36 (0.169)</td>
</tr>
<tr>
<td>3. I think that this course improved my ability to communicate science verbally.</td>
<td>4.29 (0.163)</td>
</tr>
<tr>
<td>4. I think that this course improved my ability to comprehend primary scientific papers.</td>
<td>4.29 (0.163)</td>
</tr>
<tr>
<td>5. I think that this course improved my understanding of neuroimmunology.</td>
<td>4.86 (0.097)</td>
</tr>
</tbody>
</table>

Data are postcourse survey results as means (SE) for responses to the question “What is your level of agreement with the following statements?” for students in 2011; n = 14 students total. Results were scored with the following scale: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree.
communicate to a layperson audience, but we know of none that have been as extensive as our course.

Limitations

A limitation of this study is the small sample size. Only a small number of students enrolled in the course, and the amount of time and work that it took TAs to grade each assignment limited maximum enrollment. Given the iterative nature of the writing, feedback, and revision associated with the assignments in the course, we would have needed many more graduate student TAs to increase the course size. We have plans to adopt this format in a larger course with more peer feedback and less TA feedback to see whether similar gains are found despite less one-on-one attention to each student.

Second, another limitation is that we cannot separate the impact of the curriculum from the impact of the specific instructors of the course. Although we think that this course is successful due to the curriculum, a teacher effect could be responsible for some of the gains. We have plans to have other instructors teach the course to see if similar gains can be achieved using the same curriculum but different instructors.

Another potential limitation for expanding this course format for other upper-level undergraduate courses would be the recruitment of qualified TAs. The two graduate students who served as TAs (S. E. Brownell and J. V. Price) were codvelopers of the course goals, curriculum, and format, and thus not typical TAs. It might be difficult to formally train graduate students to serve as TAs for this type of course because they may not have previously taken a similar course. Our recommendation is for instructors interested in implementing a course such as ours to prepare for a considerable time commitment, and if recruiting graduate student TAs, to find individuals with a strong interest in teaching who can dedicate significant amounts of time to giving high-quality feedback to course participants in a timely fashion.

Although we do not have data to support this claim for this class, we suspect that the writing assignments improve not only student communication skills but also overall content knowledge, as suggested by the writing-to-learn literature (3, 11, 13, 30, 31). We cover an equivalent amount of information as traditional lecture-based upper-level courses, but hypothese that students will gain better mastery of the material using this writing-intensive format, based on science communication to a diverse audience. Additionally, having students learn how to use layperson’s language to describe complicated scientific ideas might even help them negotiate learning new material where they are unfamiliar with the terms (12). The lack of this data is a limitation of this study, but we are developing methods to formally test this hypothesis in future iterations of the class. We do, however, strongly feel that it is possible to teach both content and skills simultaneously, and we urge others to consider developing similar course formats for upper-level biology classes.

Conclusions

We focused on teaching science communication to a layperson audience for a number of reasons. There has been a call for scientists to engage with the lay public (17, 19), but there seems to be an absence of explicit instruction of these skills in the undergraduate biology curriculum. In particular, we know of no other existing course so focused on science communication taught in the context of basic science. Explaining complicated scientific information to a nonscientist audience is difficult and, like most communication skills, improves with practice. If we as a scientific community feel as though this is an important skill, then it is a skill that we need to explicitly teach.

REFERENCES

5. Collins D. Pretesting survey instruments: an overview of cognitive meth-

12. Hand B, Prain V, Lawrence C, Yore LD. A writing in science frame-
work designed to enhance science literacy. Int J Sci Educ 21: 101021–
101035, 1999.

13. Hudd SS, Smart RA, Delohery AW. “My understanding has grown, my percep-

