On systolic murmurs and cardiovascular physiological maneuvers

Sergio A. Salazar, Jose L. Borrero, and David M. Harris
University of Central Florida College of Medicine, Orlando, Florida

Submitted 13 December 2011; accepted in final form 14 August 2012

Salazar SA, Borrero JL, Harris DM. On systolic murmurs and cardiovascular physiological maneuvers. Adv Physiol Educ 36: 251–256, 2012; doi:10.1152/advan.00128.2011.—Physiological principles that directly apply to physical diagnosis provide opportune occasions to bring basic science to the bedside. In this article, we describe the effect of cardiac maneuvers on systolic murmurs and how physiological principles apply to the explanation of the changes noted at the bedside. We discuss the effect of Valsalva, squatting, and hand grip maneuvers on different physiological parameters influencing preload, afterload, chamber dimensions, and pressure gradients. The clinical manifestations noted during the aforementioned maneuvers are described in common cardiac conditions responsible for the production of certain systolic murmurs.

Valsalva; aortic stenosis; squatting; hand grip; hypertrophic obstructive cardiomyopathy

MAKING THE TRANSITION from basic science knowledge to clinical application has always been a challenge in medicine. In particular, physiological principles that have direct clinical pertinence are difficult to demonstrate at the bedside. There have been attempts to use patient simulators to improve cardiovascular physiology understanding, with success (12). The use of information technology to enhance most curriculums is standard and has contributed to improvements in information acquisition and time efficiency.

Although medical information is much more easily accessed than in the past, the clinical skills used for bedside diagnosis have declined (1). There is increased dependence on nonbedside testing to guide the clinician at arriving at a working diagnosis. While the void between technology and “laying of hands” increases, our capacity to apply physiological principles to the clinical assessment deteriorates. I believe that we, as educators, have a responsibility to bridge basic science to the clinical art of medicine, not only to improve bedside skills and understanding of physiology but to improve patient outcomes. Physiological maneuvers that have a direct effect on the detection and diagnosis of cardiac murmurs are one example where physiology meets clinical medicine at the bedside.

It has always seemed an axiom for medical students to memorize the effects of cardiac maneuvers on the intensity and timing of cardiac murmurs. Memorization is usually done for exam purposes with loss of recall almost immediately. It is my belief that this phenomenon can be circumvented by a basic understanding of the cardiovascular and physiologic effects of maneuvers on the physical exam findings of murmurs.

In this article, we will begin with a discussion of the basic physiology, determinants of blood flow, and factors that contribute to murmurs. Next, we will introduce the most common maneuvers that can be used bedside to differentiate murmurs: Valsalva, squatting, and and hand grip. We will examine their effect on preload, afterload, chamber dimensions, and pressure gradients and correlate these findings to the anatomic induced aberrancy of flow responsible for the sound intensity and timing of murmurs.

Blood Flow

To better understand how these maneuvers can be used to characterize and decipher murmurs, it is necessary to review the basic principles underlying blood flow that contribute to these sounds. Blood flow is often simplified by Ohm’s law of hydrodynamics (flow = \(\Delta \text{pressure/\text{resistance}} \)), which applies to all vessels. Since blood vessels are viewed as rigid, cylindrical tubes, the resistance variable can be further characterized according to Jean Poiseuille’s studies on liquid flow in straight, rigid, cylindrical tubes. Ohm’s law of hydrodynamics was modified to give us the Poiseuille-Hagen equation: flow = \(\frac{(\Delta \text{pressure} \times \pi r^4 \times \text{viscosity} \times \text{length})}{r} \), where \(r \) is the radius. To relate the flow of blood to this equation would require six assumptions:

1. The fluid is incompressible.
2. The tube is straight, rigid, cylindrical, and unbranched and has a constant radius.
3. The velocity of the fluid layer at the wall must be zero.
4. The flow is laminar.
5. The flow is steady, not pulsatile.
6. The viscosity is constant.

While it can be argued that blood flow abides by the first three assumptions, it should be evident that the last three assumptions are not met. For the sake of this article, we will focus on assumptions 4 and 5 and how they relate to murmurs.

Laminar versus turbulent blood flow. According to Ohm’s law of hydrodynamics (flow = \(\Delta \text{pressure/\text{resistance}} \)), flow should increase linearly with the driving pressure (\(\Delta \text{pressure} \)) if resistance is constant. This results in laminar blood flow, which can be described as concentric layers of blood moving parallel in the vessel with high velocity in the center of the vessel and low velocities along the walls. Interestingly, at high flow rates, flow rises to a lesser degree and is no longer proportional to driving pressure. This is due to an increase in resistance, which is a consequence of turbulent or nonlaminar blood flow. The point in which laminar flow becomes turbulent is called the Reynolds’s number and is defined by the following equation:

Reynold’s number

\[
R = (2 \times \text{diameter} \times \text{velocity} \times \text{density})/\text{viscosity}
\]

This number lacks units, and blood flow is laminar below 2,000 and highly turbulent above 3,000. The two most likely causes of an increased Reynolds’s number and therefore turbulent blood flow are increased velocity of blood flow and low viscosity (reduced hematocrit). An increase in diameter could...
apparently lead to an increased Reynold’s number; however, it is important to recognize that increased diameter is usually associated with a decreased velocity because velocity is proportional to 1/diameter.

The differentiation between laminar and turbulent blood flow is clinically significant. Under normal conditions, blood flow is laminar and silent. Turbulent blood flow generates noise due to the vortexes of blood, which can be heard via stethoscope. The most common causes of heart murmurs include mechanisms that affect diameters of vessels or valves, thus affecting the velocity of blood flow through them. Therefore, techniques that can alter velocities through these areas and can change the amount of turbulence are important in the clinical assessment of murmurs.

Blood flow is pulsatile. Assumption 5 requires that flow is steady, not pulsatile. This is obviously not evident in our cardiovascular system, in which the ventricles serve as a pressure generator, which contracts and relaxes. This results in the systolic and diastolic blood pressures within the cardiovascular system. More specifically, the pressure increase caused by the isovolumetric contraction of the ventricle is potential energy. The velocity of blood flow during ejection comprises the kinetic energy. According to Bernoulli’s principle, it is the summation of potential and kinetic energy that comprises the total energy. Therefore, it is more accurate to say that blood moves from higher to lower total energies, as opposed to higher to lower pressures. Additionally, the basis of Bernoulli’s principle is that potential and kinetic energy can be interconverted. The best example of this is a blood vessel in which a narrowed portion exists in a central region of a horizontal tube. The pressure in the narrowed portion is less than the accompanying section downstream due to the high resistance, yet flow still persists. Since flow is equal to the product of velocity and cross-sectional area, the narrowing of the tube causes an increase in velocity in that section. Even though the blood in the narrow section has a lower potential energy (pressure) than the downstream section, the kinetic energy (velocity) has been increased. Thus, the combined potential and kinetic energies are greater in the narrow section than the downstream section, and flow is maintained. Comprehension of the relationship between pressure gradients (potential energy) and velocity (kinetic energy) and their roles in the generation of turbulent blood flow are crucial to understand the translation of basic cardiovascular physiology to murmurs.

Maneuvers

The Valsalva maneuver. The Valsalva maneuver is achieved by closing of the glottis and attempting to forcibly exhale. Since air cannot escape through the closed glottis and the thoracic and abdominal muscles are contracting, an acute increase in intrathoracic and abdominal pressures ensues. Since the venous circulation is a “low-pressure system,” the Valsalva maneuver interferes with venous return to the right side of the heart. Due to the decrease in right ventricular preload, left ventricular end-diastolic volume will diminish. Echocardiographic experiments (11) have documented decreases in left ventricular chamber dimensions and stroke volume during the Valsalva maneuver. In addition, intravascular ultrasound has demonstrated that the increase in intrathoracic pressure results in a decrease in cross-sectional area and flow volume in the superior vena cava, leading to a decrease in preload to the right side of the heart (3). These changes in volume and chamber dimensions have a direct effect on physical exam findings of left-sided systolic murmurs.

A reduction in left ventricular end-diastolic volume induced by the Valsalva maneuver results in a diminished pressure gradient between the ventricle and aorta. Therefore, according to Ohm’s law of hydrodynamics, flow will decrease as well. According to Bernoulli’s principle, a decrease in flow will result in a reduced ejection velocity because the cross-sectional area of the aortic valve has not changed. On the account of decreased ejection velocity, the Reynold’s number and propensity for turbulence will be less. It can therefore be predicted that less turbulence will lead to a decline in the murmur.

Squatting. A sudden postural change from standing to squatting results in brisk changes in left ventricular chamber size, cardiac output, heart rate, the blood pressure response, and peripheral vascular resistance. Upon squatting, the compression of the veins in the lower extremities augments venous return to the right atrium. In contrast to the Valsalva maneuver, which leads to a smaller preload, squatting increases end-diastolic volume due to increased venous return. It has been demonstrated that there is also an increase in left ventricular cavity dimension, stroke volume, and arterial pressure and a decrease in heart rate and total peripheral resistance due to baroreceptor reflexes (5, 6). Therefore, it can be predicted that squatting would have the opposite effect of the Valsalva maneuver. The increased preload and ejection velocity would tend to increase the Reynold’s number, the possibility of turbulence, and the intensity of the murmur. It follows that returning to a standing position will decrease venous return, left ventricular chamber size, and stroke volume.

Hand grip. Isometric exercise will result in minimal elevation of the heart rate with a significant increase of systolic and diastolic blood pressures leading to an increase in left ventricular afterload (9). The increased afterload attenuates the pressure gradient across the aortic valve, which leads to decreased stroke volume and ejection velocity. Again, decreases in ejection velocity would tend to decrease the Reynold’s number and the potential for turbulence. Therefore, increases in afterload can delay left ventricular emptying and thus have a significant effect on systolic ejection and regurgitant murmurs.

Systolic Murmurs

We shall concentrate on the most common and clinically significant encountered murmurs in the adult patient. We will limit our discussion to aortic stenosis (AS), mitral regurgitation (MR), hypertrophic obstructive cardiomyopathy (HOCM), and mitral valve prolapse (MVP). For the sake of discussion regarding the effect of maneuvers on auscultatory findings in systolic murmurs, it is best to concentrate on the anatomic abnormalities that are responsible for the production of the abnormal sounds. It is believed that murmurs are produced by obstruction to laminar flow by abnormal anatomic changes, thus creating vortexes (tiny eddies) (2). The intensity of the disruption of laminar flow over these anatomic changes is partially related to the velocity of flow. The intensity of sound becomes more pronounced as the velocity increases due to an increase in the production of vortexes.

Systolic murmurs are divided into ejection systolic murmurs, AS and HOCM, and regurgitant murmurs, MR and MVP. We shall begin our discussion with the systolic ejection murmurs of AS. We will discuss HOCM and MVP together due to their similarity in behavior with cardiac maneuvers.
AS. AS is characterized by a narrowing in the diameter of the left ventricular outflow tract. As described previously regarding Bernoulli’s principle, the reduction in the cross-sectional area of the valve causes augmented jet velocity, increased Reynolds’s number, and a systolic ejection murmur (4). The typical murmur of AS is a crescendo-decrescendo murmur loudest at the base radiating to the carotids. It is helpful to closely listen to the second heart sound (S2), since in severe AS the aortic component is absent and thus a physiologically split S2 is a reliable sign of the absence of severe disease (4). In addition, the timing of the carotid pulse compared with S2 can be helpful in making the differentiation between aortic sclerosis (calcium deposition on the valve cusp without significant stenosis) and AS. With increasing obstruction, the carotid pulse will peak closer to S2 since it will take longer for left ventricular emptying to occur. Also, a weaker pulse would be present due to the decreased peak aortic pressure during systole (Fig. 1A). The finding of both a weak and delayed pulse is termed “pulsus parvus et tardus,” a very specific sign of severe AS (10). When we think of the effect of cardiac maneuvers on systolic ejection murmurs, it is useful to think of changes in stroke volume with regard to flow-velocity relationships and the changes expected in the auscultatory findings.

The effect of the Valsalva maneuver on the intensity of AS is shown in Fig. 1B. When the Valsalva maneuver is performed, there is increased venous return to the lower extremities, and the resultant bradycardia, there is an increase in stroke volume (Fig. 1C). The increased volume ejected from the left ventricle will lead to an increase in the intensity of the murmur. Conversely, standing from a squatting position will lead to the pooling of venous blood in the lower extremities with the reverse effect on stroke volume and resultant reduction in the intensity of the murmur.

During hand grip, as discussed above, there is an increase in left ventricular afterload, which causes an increase in the impedance to left ventricular emptying. Since flow is dependent in part on the pressure gradient across the stenosis, it follows that by increasing afterload, the difference in intraventricular pressure to aortic pressure will diminish. The decrease in pressure gradient will cause less blood flow (velocity and quantity) across the valve per unit time, resulting in a decrease of the murmur of AS.

MR. In MR, the defect is in lack of coaptation (approximation) of the mitral valve leaflets during systole, resulting in retrograde flow of part of the stroke volume into the left atrium. Since flow in a vessel is most influenced by the radius of the vessel, one can assume that the decrease in coaptation of the mitral valve leaflets will lead to a greater radius of the incompetent area, facilitating regurgitation. MR is usually noted as a blowing holosystolic murmur loudest at the apex with radiation to the axillary border (Fig. 2A).

If we consider the Valsalva maneuver, high intrathoracic pressures will decrease right ventricular preload, resulting in a smaller left ventricular end-diastolic volume and pressure (Fig. 2B). The reduction in preload will result in diminished ventricular systolic volume and better coaptation. Additionally, the high intrathoracic pressures due to the Valsalva maneuver will transmit to the pulmonary venous circulation and the left atrium. The combination of these two factors results in a decline in end-diastolic volume within the left ventricle and would lead to less regurgitation and intensity of the murmur.

Squatting will have the reverse effect in that there will be augmentation of venous return to the right side of the heart with a subsequent increase in left ventricular end-diastolic volume (Fig. 2C). The increase in volume in the left ventricle will decrease coaptation of the leaflets due to further separation. The increase in preload also increases the volume of regurgitant jet between the left ventricle and atrium. The lack of coaptation will also facilitate the regurgitant jet, thus increasing the murmur of MR. Sudden standing from a squatting position will have the reverse effect by decreasing venous return to the right side of the heart and decreasing left ventricular end-diastolic volume.

Hand grip is useful in the evaluation of MR, specifically in differentiating it from AS. As we have discussed, hand grip will increase left ventricular afterload. Increases in afterload will result in higher end-diastolic volumes and ultimately ventricular systolic pressure increasing the pressure gradient between the left atrium and ventricle. These changes will worsen coaptation and facilitate regurgitation into the left atrium. The effect of hand grip in MR is in contrast to the decreasing intensity of the murmur of AS during the same maneuver.

HOCM. The anatomic abnormality in HOCM is due to pathological asymmetric hypertrophy of the proximal interventricular septum. The thickened proximal septum induces a transient outflow obstruction. Due to the thickened septum, the outflow tract is narrowed, contributing to increase velocity through this section in accordance with Bernoulli’s principle. The high resistance also causes the formation of a larger than normal pressure gradient between the main body of the left ventricle and the outflow tract distal to the obstruction during ventricular contraction. This high-velocity blood movement increases turbulence as well as a Venturi effect drawing the anterior mitral leaflet into approximation to the septum, causing a transient outflow obstruction. This abnormality is facilitated by the fact that some patients with HOCM have elongated mitral leaflets (10). The murmur of HOCM is a medium-pitched ejection murmur best heard at the left sternal border.

Any maneuver that decreases left ventricular volume will exacerbate the anatomic aberrancy (by narrowing the outflow tract), increasing obstruction, the pressure gradient proximal and distal to the obstruction, and turbulence, thus increasing the intensity of the murmur. The expected findings of maneuvers in HOCM are apparent when the pathophysiological reasons for the obstruction are known.

The Valsalva maneuver will increase the intensity of the murmur due to the decrease in preload to the right side of the heart, resulting in decreased left ventricular end-diastolic volume (the same is seen with standing from a squatting position). Decrease in left ventricular end-diastolic volume will further approximate the septum to the mitral apparatus, worsening the outflow obstruction during systole and increasing the intensity of the murmur. Likewise, maneuvers that increase preload to the left ventricle (e.g., squatting, leg raising, etc.) will decrease the intensity of the murmur by diminishing the Venturi effect secondary to separating the septum from the anterior mitral
Fig. 1. Effect of procedures on aortic stenosis. A: aortic stenosis (baseline). B: aortic stenosis + Valsalva maneuver. C: aortic stenosis + squatting. L, left.
Fig. 2. Effect of procedures on mitral regurgitation.

A: mitral regurgitation (baseline).

B: mitral regurgitation / Valsalva maneuver.

C: mitral regurgitation / squatting.

Mitral Regurgitation (insufficiency)
Increased L atrial and ventricular volumes
Increased preload
Mitral valve fails to close completely.
Flow across mitral valve, (from ventricle to atrium occurs during systole)
This flow is turbulent
Murmur heard (Holosystolic)

Flow across mitral valve, (from ventricle to atrium occurs during systole)
End diastolic volume, reduced
Stroke volume, reduced
Flow between L ventricle and L atrium across mitral valve during systole, decreased.
Decreased turbulence
Decreased murmur intensity

Flow across mitral valve, (from ventricle to atrium occurs during systole)
Mitral valve fails to close completely.
Murmur heard (Holosystolic)

Increased L atrial and ventricular volumes
Increased preload
Flow across mitral valve, (from ventricle to atrium occurs during systole)
Normal L ventricular pressure
Normal L atrial pressure
Normal L ventricular pressure in mitral regurgitation
Normal L atrial pressure in mitral regurgitation
L ventricular pressure in mitral regurgitation
L atrial pressure in mitral regurgitation
L ventricular pressure in mitral regurgitation + Valsalva
L ventricular pressure in mitral regurgitation + squatting

SYSTOLIC MURMURS AND CARDIOVASCULAR PHYSIOLOGICAL MANEUVERS
leaflet. Hand grip will increase left ventricular afterload and decrease left ventricular emptying, thus inducing a relative increase in left ventricular volume during systole. The effect on the murmur of HOCM is that of diminished intensity (10).

MVP. MVP is recognized by auscultation due to its characteristic midsystolic click followed by a late systolic murmur. Unfortunately, these findings can be present intermittently, making the clinical diagnosis at times difficult. It is not unusual to hear a normal cardiac exam, a click only, the murmur only, or a click and murmur in the same individual at different times. The pathology of MVP is due to myxomatous degeneration of the mitral valve leaflets, leading to a redundancy of tissue. This redundancy results in the prolapse of one or both of the leaflets of the mitral valve into the left atrium during systole. The redundant tissue disrupts proper coaptation of the leaflets, facilitating valvular insufficiency, leading to a late mitral regurgitant murmur. It is believed that the click heard before the murmur is due to sudden tensing of the chordae tendineae and/or valve leaflets (7). It is important to realize that the anatomic aberrancy will be exacerbated by decreasing left ventricular end-diastolic volume. The critical volume at which prolapse begins is when the contracting ventricle reaches 75 ml (2). With continued systole, the coaptation of the leaflets then fails, and regurgitation occurs. Decreasing left ventricular end-diastolic volume will facilitate reaching the critical volume earlier during systole, thus precipitating the click and murmur to occur closer to the first heart sound. For this reason, maneuvers that decrease left ventricular volume (e.g., Valsalva or standing) will cause the click and murmur to occur earlier in systole and become more prominent. Likewise, any maneuver that increases left ventricular volume (squatting or leg raise) will result in reaching the critical volume (75 ml) later in systole, leading to a delay in the appearance of the click and murmur.

To summarize, murmurs that decrease in intensity with the Valsalva maneuver, MR and AS, are best distinguished by the use of isometric exercise (hand grip). Murmurs that increase in intensity with the Valsalva maneuver, MVP and HOCM, are best distinguished by the character of the murmur, location, and the presence or absence of a click. The effect of maneuvers on the timing and intensity of the features of MVP are of additional assistance as well as the decrease in intensity of the murmur of HOCM with hand grip.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: S.A.S., J.L.B., and D.M.H. analyzed data; S.A.S. drafted manuscript; S.A.S., J.L.B., and D.M.H. edited and revised manuscript; S.A.S., J.L.B., and D.M.H. approved final version of manuscript; J.L.B. prepared figures.

REFERENCES