simultaneously reviewing the major ideas of physiology (as presented in the ordinary lectures) (2). However, before we proceed to such a measure, the faculty members should (1) redesign the demonstrations’ structure to provoke more active student participation; (2) renew the experimental apparatus and demonstration material; and (3) be more selective as to what is essential to demonstrate during these experimental classes, with a clear view of what has been mentioned during the ordinary lectures and how it was discussed.

REFERENCES

The Blanket Method: a Novel Method of Teaching Peritoneal Relations of Female Reproductive Organs

In addition to breaking monotony during the lecture, the rapid-response test is also a recall or revision of previously studied topics. As a result, students find this activity very interesting and useful. Development of healthy competition among the students within the class is also observed.

Mohandas Rao K. G.
Department of Anatomy
Melaka Manipal Medical College (Manipal Campus)
Manipal, Karnataka 576104, India
E-mail: mohandaskg@gmail.com
doi:10.1152/advan.00071.2005

The Blanket Method: a Break During Lecture

We at Melaka Manipal Medical College (Manipal Campus) have students undergoing their first 2.5 yr of a medical training program. During the first year, the students are taught anatomy, physiology, and biochemistry. The anatomy classes include small-group (up to 20 students) cadaveric dissection sessions and large-group lecture classes of 1 h each.

The small-group teaching is conducted in the form of discussion and discussion sessions where students are actively involved in learning. However, it has been observed that during large-group lecture classes, students are not able to concentrate on the lecture after an initial period of 20–25 min. This is mainly because of the monotony and lack of variety during the lecture. An effort toward breaking the monotony, the “rapid-response test” is conducted in the middle of a lecture.

The rapid-response test. During a regular lecture class, after about 25 min of lecture, this multiple true-false test is conducted. About 10 statements on the topics discussed in the previous lecture are displayed on the screen in the form of a PowerPoint slide presentation. Of the 10 statements, usually only 3–5 statements are true statements. Students are asked to identify these true statements as fast as possible. The maximum time given for the test is 5 min. Students are allowed to refer to text books during the test. Once the test is over, during next 5 min, the teacher discusses all the statements with the students. Usually about 10 min is spent for this activity, after which the lecture is continued.

Stylianos Tsakiris
Department of Experimental Physiology
Medical School
University of Athens
PO Box 65257
Athens GR-15401, Greece
E-mail: stsakir@cc.uoa.gr

Apostolos Zarros
Department of Experimental Physiology
Medical School
University of Athens
PO Box 14172
Athens GR-11510, Greece
E-mail: azarros@med.uoa.gr
doi:10.1152/advan.00078.2005

The Rapid-Response: a Break During Lecture

We at Melaka Manipal Medical College (Manipal Campus) have students undergoing their first 2.5 yr of a medical training program. During the first year, the students are taught anatomy, physiology, and biochemistry. The anatomy classes include small-group (up to 20 students) cadaveric dissection sessions and large-group lecture classes of 1 h each.

The small-group teaching is conducted in the form of discussion and discussion sessions where students are actively involved in learning. However, it has been observed that during large-group lecture classes, students are not able to concentrate on the lecture after an initial period of 20–25 min. This is mainly because of the monotony and lack of variety during the lecture. An effort toward breaking the monotony, the “rapid-response test” is conducted in the middle of a lecture.

The rapid-response test. During a regular lecture class, after about 25 min of lecture, this multiple true-false test is conducted. About 10 statements on the topics discussed in the previous lecture are displayed on the screen in the form of a PowerPoint slide presentation. Of the 10 statements, usually only 3–5 statements are true statements. Students are asked to identify these true statements as fast as possible. The maximum time given for the test is 5 min. Students are allowed to refer to text books during the test. Once the test is over, during next 5 min, the teacher discusses all the statements with the students. Usually about 10 min is spent for this activity, after which the lecture is continued.

In addition to breaking monotony during the lecture, the rapid-response test is also a recall or revision of previously studied topics. As a result, students find this activity very interesting and useful. Development of healthy competition among the students within the class is also observed.

Mohandas Rao K. G.
Department of Anatomy
Melaka Manipal Medical College (Manipal Campus)
Manipal, Karnataka 576104, India
E-mail: mohandaskg@gmail.com
doi:10.1152/advan.00071.2005

The Blanket Method: a Novel Method of Teaching Peritoneal Relations of Female Reproductive Organs

Understanding the peritoneal relationship of organs in the abdomen and pelvis is essential for medical students. Teaching peritoneal relations in a lecture is challenging, and often at the end of a lecture, we hear comments indicating that the students did not understand the lecture well.

Here, an innovative method of teaching the peritoneal relations of female reproductive organs is described. The teacher used a blanket and three students as the peritoneum and reproductive organs during a lecture class to explain the peritoneal relations of female reproductive organs.

I presented a traditional lecture of the female reproductive system using a PowerPoint presentation and a didactic lecture. I first described the anatomy and positional relationships of the uterus, fallopian (uterine) tubes, vagina, and ovaries. When I came to explanations of the peritoneal relations of these organs, I could see some blank looks in the class. I asked the class if they need any other type of instruction to make them understand the peritoneal relations. They immediately said “yes.” I asked them to bring a big blanket for the next lecture class. During the next lecture class, I called three volunteers from the class to the lecture platform. At first, one of the volunteers was asked to stand with outstretched hands. The head of the volunteer was compared to the fundus of the uterus, the lower limbs to the vagina, and the upper limbs to the fallopian tubes. The second student stood in front of the first and portrayed the urinary bladder. The third student stood behind the other two and portrayed the rectum. Finally, a blanket was spread on all three students to demonstrate the peritoneal relations of these organs.

The big double-layer fold of blanket hanging below the outstretched hands of the middle student was compared with the broad ligament. A chalk box (representing the ovary) was then passed between the two layers of this fold and was pushed posteriorly through the posterior part of this broad ligament to show how the mesovarium was formed. The entry of ovarian vessels and uterine vessels into the broad ligament was also demonstrated effectively. The volunteer who represented the female reproductive tract was asked to bend forward to show the anatomic antverted position of the uterus. The straightening of the uterus as the bladder fills was also demonstrated. The positions of the rectouterine pouch, urovaginal pouch, and relations between the ovary and rectum were also demonstrated.

The students said it was easy to remember the peritoneal relations with such simple comparisons. Some of the specific comments were “It was easy to understand the topic,”
“Had fun in learning,” “Will never forget this class,” “In-volve us in the class like this,” and “Keep up the good work.” Very simple classroom methods like this can make the class interesting and easily understandable by undergraduate medical students.

Satheesha Nayak B.
Melaka Manipal Medical College (Manipal Campus)
Manipal, Karnataka 576104, India
E-mail: nayaksathish@yahoo.com
doi:10.1152/advan.00005.2005