PHYSIOLOGY EDUCATION TODAY: WHAT COMES NEXT?

Dee U. Silverthorn

Department of Zoology, University of Texas, Austin, Texas 78712

In the June 1998 issue of Advances in Physiology Education, several distinguished physiologists reflected on the last 100 years of physiology education. In this issue, another group of physiologists, joined by an educational psychologist, considers the recent past and the future of physiology education.

As we planned the articles in this special section, I began thinking about how physiology education has changed in recent years. In many ways, the teaching of physiology has been reflected in its textbooks. Until the early 1980s, those books were mostly descriptive text, with only a few simple line drawings. Contrast that with the physiology textbooks of today, especially at the undergraduate level, with their opulent four-color figures that occupy as much space as the text. Books today come with computer software, CD-ROMs, video tapes, and web sites. What do these changes say about the way physiology is taught and about the way our students learn? My colleagues and I sometimes joke about the challenges of teaching the MTV generation, but this is the reality. Students today are the children who, instead of reading a book or watching a little TV, are spending their time glued to computer monitors, video games, and the TV. They think in sound bites. They do not read as much as previous generations, and their vocabularies are sometimes limited to a point that seems appalling to their elders. I was reading Charlotte's Web and short stories from a 1950s Childcraft to my niece and nephews and found myself translating words that children 40 years ago must have known. It was particularly depressing to have to explain that a pirate's booty has nothing to do with "shake your booty." What I have come to realize is that we have a generation gap in physiology teaching, just as we have a generation gap in much of our daily society.

What has happened in the last 30 years to create such dramatic changes? In my opinion, the rapid advances in technology and the concomitant information explosion have had a direct impact on what and how we teach. As our scientific knowledge base expanded rapidly in the 1970s and 1980s, faculty were faced first with keeping current, and then with having to incorporate the new information into their teaching. Textbooks became thicker and thicker, and, for the first time in history, we knew more than we could possibly hope to teach within the confines of a structured physiology course. Where would it all end?

At first, some schools tried to compensate by increasing the number of contact hours and throwing more and more facts at the students, and then, as we demanded that our students learn (or perhaps it would be more accurate to say memorize) more, some of the skills that we had unconsciously incorporated into our more leisurely teaching were neglected. We no longer had time to talk about the classic experiments in physiology, so our students never learned about the processes of science: how to design a controlled experiment, and how to critically analyze results. Somehow, the basic themes and principles of physiology got lost in the morass of detail. We nurtured students who could memorize and regurgitate reams of facts but could not construct or interpret data in a graph. They could recite pathways but were unable to tie together disparate bits of information to solve a problem. Laboratories, traditionally the place where students could actively experiment with concepts they were studying, disappeared or were replaced with "cookbook" experiments that did not require the students to think.

During the same time period, information about how people learn was gradually finding its way into the...
physiology classroom. The transfer of educational research to teaching scientists has always been slow. Traditionally, graduate students in the “hard” sciences take no formal education courses. Most of us learned to teach by observing others and then developing our own teaching style based on what we felt was effective. The traditional separation of schools of science and schools of education is still present, but, as more and more physiology faculty develop competency in educational methodology, we now have scientists instructing scientists on how to teach.

Research into how we process and remember information has shown that people learn best when they are actively engaged with the material. As a result of these findings, summarized in this issue of Advances in Physiology Education in the article by Marilla Svinicki, the format of physiology courses has been changing. The new teaching techniques masquerade under many names: problem-based learning, active learning, collaborative and cooperative learning, inquiry learning, or discovery learning. No matter what the name, these teaching methods share two important characteristics: they mark a shift from a teacher-centered to a student-centered classroom, and they place the responsibility for learning back where it belongs—on the student. Several articles in this issue discuss different models for nonlecture-based instruction. Problem-based learning in medical schools and in an undergraduate setting is addressed in the two articles by William Galey and Sheella Mierson. Ann McNeal, Donald Stratton, and I present three different approaches for teaching students about the process of science in laboratory settings.

These innovative teaching methods have not been wholeheartedly embraced by everyone. Debates have raged over whether it is better to teach content or to sacrifice some content in the interest of teaching process and skills. This debate has been particularly heated at the medical school level, where school reputations rise and fall partly on the basis of scores for standardized basic science examinations. Manpower and faculty time commitment are also major considerations in the decision to implement active learning methods. Unarguably, it is less demanding on the faculty to schedule a lecture for 160 students in an auditorium than to split those students into small groups with separate faculty facilitators. However, that same large lecture setting can be modified for active and problem-based learning if the faculty are willing to be flexible.

If we agree that we cannot possibly teach students everything there is to know about physiology, then it becomes imperative upon us as physiologists to decide what content should be covered in a physiology course. What is essential for this population of students? What are the basic tenets of physiology? What common themes span the spectrum of physiological systems and form a framework upon which students can tack new knowledge as they acquire it? Dan Lemons and Joe Griswold discuss how they have approached this problem in their article on setting benchmarks for physiology learning.

How to teach in the wake of the information explosion is only half the problem facing us as instructors. The other half of the problem is technology and what its role in physiology education should be. As we move into the 21st century, we have access to computer simulations, interactive (and not-so-interactive) software, data-acquisition systems, Internet resources, and multimedia for the classroom. However, in many ways, technology does not match the needs of students, as discussed in the article by Rob Carroll, and in some settings it has created more problems than solutions.

Technology by itself does not improve teaching, although many people fail to recognize that fact. When I reviewed grant proposals for the Instrumentation and Laboratory Improvement Program of the National Science Foundation, we were inundated with proposals for the purchase of computers and the software program A.D.A.M., the Animated Dissection of Anatomy for Medicine. However, the vast majority of the grant writers had not thought beyond the purchase of the software; they had no idea of how to integrate A.D.A.M. into their curricula. The prevailing theme in the grants was “If I have A.D.A.M., my students will learn anatomy better.” However, the writers failed to understand that the software was a resource, just like a textbook, and not a substitute instructor.

Thoughtfully incorporating technology into the classroom or student laboratory requires a tremendous
time commitment. Considering the other demands on the time of most faculty, it is not surprising that the use of technology in physiology education has been limited. One problem that confounds faculty hoping to incorporate multimedia resources and computers into their teaching is the difficulty of selecting appropriate software. There is no quality control, such as that obtained through peer review. Physiology software is often self-published or produced by textbook publishers who are responding to market demands for software ancillaries. There is no single source, equivalent to Books in Print, for determining what programs are available, and there is often no way to assess the accuracy and appropriateness of a given application for a particular student population. Even if instructors had the time, many programs are not available for preview and must be purchased sight unseen. I would guess that most of us who use physiological simulations in our teaching have a drawerful of discarded programs that we tried and abandoned. What can be done to help us deal with assessing physiological software? A few resources are currently available. The Technology Committee of the Human Anatomy and Physiology Society has compiled an annotated list of teaching software for anatomy and physiology. Also, in this journal, associate editor Harold Modell orchestrates reviews of software sent to the American Physiological Society (APS). A widely disseminated clearinghouse for physiological software that allowed dialogue between users, such as a section on the APS web site, would certainly be beneficial to the physiological community around the world. In her article, Marsha Matyas of the APS Education Office addresses this and also some of the plans of APS for supporting the teaching needs of its members in the years to come.

Another problem raised by technology is teaching students how to critically evaluate information published over the Internet. How many times have you heard students say, “But it MUST be right... I read it in a book!” When you translate this belief to material read on the Internet, the potential for students to acquire erroneous information becomes enormous. If you have ever asked students to conduct web searches on a physiological topic, you know how much of the information they find is suspect, such as “facts” about nutritional supplements posted by the companies that manufacture or sell the products.

In many ways, we are extraordinarily fortunate to have the problem of how to incorporate technology into our teaching. Many physiology departments around the world do not have the luxury of computer access for their students or even for their faculty. In the final article of this special section, Ann Sefton, Chair of the Commission for Teaching of the International Union of Physiological Sciences, examines the future of physiology teaching from an international point of view. Most of us cannot appreciate the difficulty of teaching physiology in developing countries, where they may have only one textbook for 200 students and where one overhead projector bulb must last for an entire year. The appropriate use of animals in laboratories or practical exercises is another item of concern in many countries. We have a responsibility as part of the worldwide community of physiologists to look beyond our borders and ask what we can do to improve physiology education everywhere as we enter the 21st century.

Address reprint requests to the author.